3,609 research outputs found

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Sampling of graph signals via randomized local aggregations

    Get PDF
    Sampling of signals defined over the nodes of a graph is one of the crucial problems in graph signal processing. While in classical signal processing sampling is a well defined operation, when we consider a graph signal many new challenges arise and defining an efficient sampling strategy is not straightforward. Recently, several works have addressed this problem. The most common techniques select a subset of nodes to reconstruct the entire signal. However, such methods often require the knowledge of the signal support and the computation of the sparsity basis before sampling. Instead, in this paper we propose a new approach to this issue. We introduce a novel technique that combines localized sampling with compressed sensing. We first choose a subset of nodes and then, for each node of the subset, we compute random linear combinations of signal coefficients localized at the node itself and its neighborhood. The proposed method provides theoretical guarantees in terms of reconstruction and stability to noise for any graph and any orthonormal basis, even when the support is not known.Comment: IEEE Transactions on Signal and Information Processing over Networks, 201

    Genetic Algorithm based Cluster Head Selection for Optimimized Communication in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network (WSNs) utilizes conveyed gadgets sensors for observing physical or natural conditions. It has been given to the steering conventions which may contrast contingent upon the application and system design. Vitality administration in WSN is of incomparable significance for the remotely sent vitality sensor hubs. The hubs can be obliged in the little gatherings called the Clusters. Clustering is done to accomplish the vitality effectiveness and the versatility of the system. Development of the group likewise includes the doling out the part to the hub based on their borders. In this paper, a novel strategy for cluster head selection based on Genetic Algorithm (GA) has been proposed. Every person in the GA populace speaks to a conceivable answer for the issue. Discovering people who are the best proposals to the enhancement issue and join these people into new people is a critical phase of the transformative procedure. The Cluster Head (CH) is picked using the proposed technique Genetic Algorithm based Cluster Head (GACH). The performance of the proposed system GACH has been compared with Particle Swarm Optimization Cluster Head (PSOCH). Simulations have been conducted with 14 wireless sensor nodes scattered around 8 kilometers. Results proves that GACH outperforms than PSOCH in terms of throughput, packet delivery ratio and energy efficiency

    An Enhanced Source Location Privacy based on Data Dissemination in Wireless Sensor Networks (DeLP)

    Get PDF
    open access articleWireless Sensor Network is a network of large number of nodes with limited power and computational capabilities. It has the potential of event monitoring in unattended locations where there is a chance of unauthorized access. The work that is presented here identifies and addresses the problem of eavesdropping in the exposed environment of the sensor network, which makes it easy for the adversary to trace the packets to find the originator source node, hence compromising the contextual privacy. Our scheme provides an enhanced three-level security system for source location privacy. The base station is at the center of square grid of four quadrants and it is surrounded by a ring of flooding nodes, which act as a first step in confusing the adversary. The fake node is deployed in the opposite quadrant of actual source and start reporting base station. The selection of phantom node using our algorithm in another quadrant provides the third level of confusion. The results show that Dissemination in Wireless Sensor Networks (DeLP) has reduced the energy utilization by 50% percent, increased the safety period by 26%, while providing a six times more packet delivery ratio along with a further 15% decrease in the packet delivery delay as compared to the tree-based scheme. It also provides 334% more safety period than the phantom routing, while it lags behind in other parameters due to the simplicity of phantom scheme. This work illustrates the privacy protection of the source node and the designed procedure may be useful in designing more robust algorithms for location privac

    Genetic Algorithm based Cluster Head Selection for Optimimized Communication in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network (WSNs) utilizes conveyed gadgets sensors for observing physical or natural conditions. It has been given to the steering conventions which may contrast contingent upon the application and system design. Vitality administration in WSN is of incomparable significance for the remotely sent vitality sensor hubs. The hubs can be obliged in the little gatherings called the Clusters. Clustering is done to accomplish the vitality effectiveness and the versatility of the system. Development of the group likewise includes the doling out the part to the hub based on their borders. In this paper, a novel strategy for cluster head selection based on Genetic Algorithm (GA) has been proposed. Every person in the GA populace speaks to a conceivable answer for the issue. Discovering people who are the best proposals to the enhancement issue and join these people into new people is a critical phase of the transformative procedure. The Cluster Head (CH) is picked using the proposed technique Genetic Algorithm based Cluster Head (GACH). The performance of the proposed system GACH has been compared with Particle Swarm Optimization Cluster Head (PSOCH). Simulations have been conducted with 14 wireless sensor nodes scattered around 8 kilometers. Results proves that GACH outperforms than PSOCH in terms of throughput, packet delivery ratio and energy efficiency
    • …
    corecore