1,093 research outputs found

    CoBe -- Coded Beacons for Localization, Object Tracking, and SLAM Augmentation

    Full text link
    This paper presents a novel beacon light coding protocol, which enables fast and accurate identification of the beacons in an image. The protocol is provably robust to a predefined set of detection and decoding errors, and does not require any synchronization between the beacons themselves and the optical sensor. A detailed guide is then given for developing an optical tracking and localization system, which is based on the suggested protocol and readily available hardware. Such a system operates either as a standalone system for recovering the six degrees of freedom of fast moving objects, or integrated with existing SLAM pipelines providing them with error-free and easily identifiable landmarks. Based on this guide, we implemented a low-cost positional tracking system which can run in real-time on an IoT board. We evaluate our system's accuracy and compare it to other popular methods which utilize the same optical hardware, in experiments where the ground truth is known. A companion video containing multiple real-world experiments demonstrates the accuracy, speed, and applicability of the proposed system in a wide range of environments and real-world tasks. Open source code is provided to encourage further development of low-cost localization systems integrating the suggested technology at its navigation core

    Revisiting Rolling Shutter Bundle Adjustment: Toward Accurate and Fast Solution

    Full text link
    We propose a robust and fast bundle adjustment solution that estimates the 6-DoF pose of the camera and the geometry of the environment based on measurements from a rolling shutter (RS) camera. This tackles the challenges in the existing works, namely relying on additional sensors, high frame rate video as input, restrictive assumptions on camera motion, readout direction, and poor efficiency. To this end, we first investigate the influence of normalization to the image point on RSBA performance and show its better approximation in modelling the real 6-DoF camera motion. Then we present a novel analytical model for the visual residual covariance, which can be used to standardize the reprojection error during the optimization, consequently improving the overall accuracy. More importantly, the combination of normalization and covariance standardization weighting in RSBA (NW-RSBA) can avoid common planar degeneracy without needing to constrain the filming manner. Besides, we propose an acceleration strategy for NW-RSBA based on the sparsity of its Jacobian matrix and Schur complement. The extensive synthetic and real data experiments verify the effectiveness and efficiency of the proposed solution over the state-of-the-art works. We also demonstrate the proposed method can be easily implemented and plug-in famous GSSfM and GSSLAM systems as completed RSSfM and RSSLAM solutions

    USB-NeRF: Unrolling Shutter Bundle Adjusted Neural Radiance Fields

    Full text link
    Neural Radiance Fields (NeRF) has received much attention recently due to its impressive capability to represent 3D scene and synthesize novel view images. Existing works usually assume that the input images are captured by a global shutter camera. Thus, rolling shutter (RS) images cannot be trivially applied to an off-the-shelf NeRF algorithm for novel view synthesis. Rolling shutter effect would also affect the accuracy of the camera pose estimation (e.g. via COLMAP), which further prevents the success of NeRF algorithm with RS images. In this paper, we propose Unrolling Shutter Bundle Adjusted Neural Radiance Fields (USB-NeRF). USB-NeRF is able to correct rolling shutter distortions and recover accurate camera motion trajectory simultaneously under the framework of NeRF, by modeling the physical image formation process of a RS camera. Experimental results demonstrate that USB-NeRF achieves better performance compared to prior works, in terms of RS effect removal, novel view image synthesis as well as camera motion estimation. Furthermore, our algorithm can also be used to recover high-fidelity high frame-rate global shutter video from a sequence of RS images
    • …
    corecore