8,240 research outputs found

    A Soft Computing Approach to Dynamic Load Balancing in 3GPP LTE

    Get PDF
    A major objective of the 3GPP LTE standard is the provision of high-speed data services. These services must be guaranteed under varying radio propagation conditions, to stochastically distributed mobile users. A necessity for determining and regulating the traffic load of eNodeBs naturally ensues. Load balancing is a self-optimization operation of self-organizing networks (SON). It aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. Most of the algorithms are based on hard (traditional) computing which does not utilize the tolerance for precision of load balancing. This paper proposes the use of soft computing, precisely adaptive Neuro-fuzzy inference system (ANFIS) model for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuitio

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Forecasting Long-Term Government Bond Yields: An Application of Statistical and AI Models

    Get PDF
    This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets.interest rates; forecasting; neural networks; fuzzy logic.

    MODELLING EXPECTATIONS WITH GENEFER- AN ARTIFICIAL INTELLIGENCE APPROACH

    Get PDF
    Economic modelling of financial markets means to model highly complex systems in which expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. AgentsÆ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule-Bases. E. g. if a single agent believes the exchange rate is determined by a set of possible inputs and is asked to put their relationship in words his answer will probably reveal a fuzzy nature like: "IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US THEN the EURO will rise against the USD". æLowÆ and ælargerÆ are fuzzy terms which give a gradual linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as learning operators. These examples can either be empirical data or originate from an economic simulation model. The software GENEFER (GEnetic NEural Fuzzy ExplorER) has been developed for designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, Fuzzification, Rule-Base Generating and Rule-Base Tuning. The two latter steps make use of genetic and neural learning algorithms for optimizing the Fuzzy Rule-Base.

    Torque Ripple Minimization in a Switched Reluctance Drive by Neuro-Fuzzy Compensation

    Full text link
    Simple power electronic drive circuit and fault tolerance of converter are specific advantages of SRM drives, but excessive torque ripple has limited its use to special applications. It is well known that controlling the current shape adequately can minimize the torque ripple. This paper presents a new method for shaping the motor currents to minimize the torque ripple, using a neuro-fuzzy compensator. In the proposed method, a compensating signal is added to the output of a PI controller, in a current-regulated speed control loop. Numerical results are presented in this paper, with an analysis of the effects of changing the form of the membership function of the neuro-fuzzy compensator.Comment: To be published in IEEE Trans. on Magnetics, 200

    An adaptive fuzzy logic controller for intelligent networking and control

    Get PDF
    In this thesis, we present a fuzzy logic control scheme to regulate the flow of traffic approaching a set of intersections. An adaptive Fuzzy Logic Traffic Controller (FLTC) is used to adjust the green phase split of the north-south and east-west approaches of a set of traffic signals based on the actual traffic approaching the intersection. Each intersection is coordinated with its neighbouring intersections by adjusting the offset of the local intersection. The offset is adjusted by a local fuzzy logic controller loacted at each intersection. A new fuzzy control scheme, using a supervisory Fuzzy Logic Controller, is also proposed for adjusting the offset. The fuzzy knowledge base of the supervisory Fuzzy Logic Controller is automatically generated by Genetic Algorithms (GAs). The fuzzy rules generated by the integrated Fuzzy Logic and Genetic Algorithm architecture is found to be effective in optimising the traffic flow. The effectiveness of the above fuzzy control scheme is established through simulations of the traffic flow approaching an isolated intersection, two adjacent intersections, and a set of three intersections. The superiority of adjusting offset using a supervisory fuzzy logic controller is established through simulations
    • …
    corecore