865 research outputs found

    Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators

    Full text link
    We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the set-valued operator. In addition, relaxations and not necessarily vanishing proximal parameters are allowed. Weak and strong almost sure convergence properties of the iterates is established under mild conditions on the underlying stochastic processes. Leveraging these results, we also establish the almost sure convergence of the iterates of a stochastic variant of a primal-dual proximal splitting method for composite minimization problems

    A Class of Randomized Primal-Dual Algorithms for Distributed Optimization

    Get PDF
    Based on a preconditioned version of the randomized block-coordinate forward-backward algorithm recently proposed in [Combettes,Pesquet,2014], several variants of block-coordinate primal-dual algorithms are designed in order to solve a wide array of monotone inclusion problems. These methods rely on a sweep of blocks of variables which are activated at each iteration according to a random rule, and they allow stochastic errors in the evaluation of the involved operators. Then, this framework is employed to derive block-coordinate primal-dual proximal algorithms for solving composite convex variational problems. The resulting algorithm implementations may be useful for reducing computational complexity and memory requirements. Furthermore, we show that the proposed approach can be used to develop novel asynchronous distributed primal-dual algorithms in a multi-agent context

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure
    corecore