31 research outputs found

    An Imitation Learning Approach to Unsupervised Parsing

    Get PDF
    Recently, there has been an increasing interest in unsupervised parsers that optimize semantically oriented objectives, typically using reinforcement learning. Unfortunately, the learned trees often do not match actual syntax trees well. Shen et al. (2018) propose a structured attention mechanism for language modeling (PRPN), which induces better syntactic structures but relies on ad hoc heuristics. Also, their model lacks interpretability as it is not grounded in parsing actions. In our work, we propose an imitation learning approach to unsupervised parsing, where we transfer the syntactic knowledge induced by the PRPN to a Tree-LSTM model with discrete parsing actions. Its policy is then refined by Gumbel-Softmax training towards a semantically oriented objective. We evaluate our approach on the All Natural Language Inference dataset and show that it achieves a new state of the art in terms of parsing FF-score, outperforming our base models, including the PRPN.Comment: ACL201

    Weakly Supervised Reasoning by Neuro-Symbolic Approaches

    Full text link
    Deep learning has largely improved the performance of various natural language processing (NLP) tasks. However, most deep learning models are black-box machinery, and lack explicit interpretation. In this chapter, we will introduce our recent progress on neuro-symbolic approaches to NLP, which combines different schools of AI, namely, symbolism and connectionism. Generally, we will design a neural system with symbolic latent structures for an NLP task, and apply reinforcement learning or its relaxation to perform weakly supervised reasoning in the downstream task. Our framework has been successfully applied to various tasks, including table query reasoning, syntactic structure reasoning, information extraction reasoning, and rule reasoning. For each application, we will introduce the background, our approach, and experimental results.Comment: Compendium of Neurosymbolic Artificial Intelligence, 665--692, 2023, IOS Pres

    Tree Transformer: Integrating Tree Structures into Self-Attention

    Full text link
    Pre-training Transformer from large-scale raw texts and fine-tuning on the desired task have achieved state-of-the-art results on diverse NLP tasks. However, it is unclear what the learned attention captures. The attention computed by attention heads seems not to match human intuitions about hierarchical structures. This paper proposes Tree Transformer, which adds an extra constraint to attention heads of the bidirectional Transformer encoder in order to encourage the attention heads to follow tree structures. The tree structures can be automatically induced from raw texts by our proposed "Constituent Attention" module, which is simply implemented by self-attention between two adjacent words. With the same training procedure identical to BERT, the experiments demonstrate the effectiveness of Tree Transformer in terms of inducing tree structures, better language modeling, and further learning more explainable attention scores.Comment: accepted by EMNLP 201
    corecore