2,364 research outputs found

    Exploring Object Relation in Mean Teacher for Cross-Domain Detection

    Full text link
    Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt on synthetic images may lead to high generalization error on real images due to domain shift. To address this issue, recent progress in cross-domain recognition has featured the Mean Teacher, which directly simulates unsupervised domain adaptation as semi-supervised learning. The domain gap is thus naturally bridged with consistency regularization in a teacher-student scheme. In this work, we advance this Mean Teacher paradigm to be applicable for cross-domain detection. Specifically, we present Mean Teacher with Object Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster R-CNN by integrating the object relations into the measure of consistency cost between teacher and student modules. Technically, MTOR firstly learns relational graphs that capture similarities between pairs of regions for teacher and student respectively. The whole architecture is then optimized with three consistency regularizations: 1) region-level consistency to align the region-level predictions between teacher and student, 2) inter-graph consistency for matching the graph structures between teacher and student, and 3) intra-graph consistency to enhance the similarity between regions of same class within the graph of student. Extensive experiments are conducted on the transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain a new record of single model: 22.8% of mAP on Syn2Real detection dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at: https://github.com/caiqi/mean-teacher-cross-domain-detectio

    One-Shot Unsupervised Cross-Domain Detection

    Get PDF
    Despite impressive progress in object detection over the last years, it is still an open challenge to reliably detect objects across visual domains. Although the topic has attracted attention recently, current approaches all rely on the ability to access a sizable amount of target data for use at training time. This is a heavy assumption, as often it is not possible to anticipate the domain where a detector will be used, nor to access it in advance for data acquisition. Consider for instance the task of monitoring image feeds from social media: as every image is created and uploaded by a different user it belongs to a different target domain that is impossible to foresee during training. This paper addresses this setting, presenting an object detection algorithm able to perform unsupervised adaption across domains by using only one target sample, seen at test time. We achieve this by introducing a multi-task architecture that one-shot adapts to any incoming sample by iteratively solving a self-supervised task on it. We further enhance this auxiliary adaptation with cross-task pseudo-labeling. A thorough benchmark analysis against the most recent cross-domain detection methods and a detailed ablation study show the advantage of our method, which sets the state-of-the-art in the defined one-shot scenario

    Hierarchy Composition GAN for High-fidelity Image Synthesis

    Full text link
    Despite the rapid progress of generative adversarial networks (GANs) in image synthesis in recent years, the existing image synthesis approaches work in either geometry domain or appearance domain alone which often introduces various synthesis artifacts. This paper presents an innovative Hierarchical Composition GAN (HIC-GAN) that incorporates image synthesis in geometry and appearance domains into an end-to-end trainable network and achieves superior synthesis realism in both domains simultaneously. We design an innovative hierarchical composition mechanism that is capable of learning realistic composition geometry and handling occlusions while multiple foreground objects are involved in image composition. In addition, we introduce a novel attention mask mechanism that guides to adapt the appearance of foreground objects which also helps to provide better training reference for learning in geometry domain. Extensive experiments on scene text image synthesis, portrait editing and indoor rendering tasks show that the proposed HIC-GAN achieves superior synthesis performance qualitatively and quantitatively.Comment: 11 pages, 8 figure

    AIR-DA: Adversarial Image Reconstruction for Unsupervised Domain Adaptive Object Detection

    Full text link
    Unsupervised domain adaptive object detection is a challenging vision task where object detectors are adapted from a label-rich source domain to an unlabeled target domain. Recent advances prove the efficacy of the adversarial based domain alignment where the adversarial training between the feature extractor and domain discriminator results in domain-invariance in the feature space. However, due to the domain shift, domain discrimination, especially on low-level features, is an easy task. This results in an imbalance of the adversarial training between the domain discriminator and the feature extractor. In this work, we achieve a better domain alignment by introducing an auxiliary regularization task to improve the training balance. Specifically, we propose Adversarial Image Reconstruction (AIR) as the regularizer to facilitate the adversarial training of the feature extractor. We further design a multi-level feature alignment module to enhance the adaptation performance. Our evaluations across several datasets of challenging domain shifts demonstrate that the proposed method outperforms all previous methods, of both one- and two-stage, in most settings.Comment: Accepted at IEEE Robotics and Automation Letters 202
    • …
    corecore