12,674 research outputs found

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Predicting the Effectiveness of Self-Training: Application to Sentiment Classification

    Full text link
    The goal of this paper is to investigate the connection between the performance gain that can be obtained by selftraining and the similarity between the corpora used in this approach. Self-training is a semi-supervised technique designed to increase the performance of machine learning algorithms by automatically classifying instances of a task and adding these as additional training material to the same classifier. In the context of language processing tasks, this training material is mostly an (annotated) corpus. Unfortunately self-training does not always lead to a performance increase and whether it will is largely unpredictable. We show that the similarity between corpora can be used to identify those setups for which self-training can be beneficial. We consider this research as a step in the process of developing a classifier that is able to adapt itself to each new test corpus that it is presented with

    Objects that Sound

    Full text link
    In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.Comment: Appears in: European Conference on Computer Vision (ECCV) 201

    Collaborative Feature Learning from Social Media

    Full text link
    Image feature representation plays an essential role in image recognition and related tasks. The current state-of-the-art feature learning paradigm is supervised learning from labeled data. However, this paradigm requires large-scale category labels, which limits its applicability to domains where labels are hard to obtain. In this paper, we propose a new data-driven feature learning paradigm which does not rely on category labels. Instead, we learn from user behavior data collected on social media. Concretely, we use the image relationship discovered in the latent space from the user behavior data to guide the image feature learning. We collect a large-scale image and user behavior dataset from Behance.net. The dataset consists of 1.9 million images and over 300 million view records from 1.9 million users. We validate our feature learning paradigm on this dataset and find that the learned feature significantly outperforms the state-of-the-art image features in learning better image similarities. We also show that the learned feature performs competitively on various recognition benchmarks

    Weakly-Supervised Neural Text Classification

    Full text link
    Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semi-supervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.Comment: CIKM 2018 Full Pape

    Look, Listen and Learn

    Full text link
    We consider the question: what can be learnt by looking at and listening to a large number of unlabelled videos? There is a valuable, but so far untapped, source of information contained in the video itself -- the correspondence between the visual and the audio streams, and we introduce a novel "Audio-Visual Correspondence" learning task that makes use of this. Training visual and audio networks from scratch, without any additional supervision other than the raw unconstrained videos themselves, is shown to successfully solve this task, and, more interestingly, result in good visual and audio representations. These features set the new state-of-the-art on two sound classification benchmarks, and perform on par with the state-of-the-art self-supervised approaches on ImageNet classification. We also demonstrate that the network is able to localize objects in both modalities, as well as perform fine-grained recognition tasks.Comment: Appears in: IEEE International Conference on Computer Vision (ICCV) 201
    corecore