64 research outputs found

    Attention-based Curiosity-driven Exploration in Deep Reinforcement Learning

    Full text link
    Reinforcement Learning enables to train an agent via interaction with the environment. However, in the majority of real-world scenarios, the extrinsic feedback is sparse or not sufficient, thus intrinsic reward formulations are needed to successfully train the agent. This work investigates and extends the paradigm of curiosity-driven exploration. First, a probabilistic approach is taken to exploit the advantages of the attention mechanism, which is successfully applied in other domains of Deep Learning. Combining them, we propose new methods, such as AttA2C, an extension of the Actor-Critic framework. Second, another curiosity-based approach - ICM - is extended. The proposed model utilizes attention to emphasize features for the dynamic models within ICM, moreover, we also modify the loss function, resulting in a new curiosity formulation, which we call rational curiosity. The corresponding implementation can be found at https://github.com/rpatrik96/AttA2C/.Comment: Submitted to ICASSP2020, 5 pages, 8 figures, 2 table

    SEMI: Self-supervised Exploration via Multisensory Incongruity

    Full text link
    Efficient exploration is a long-standing problem in reinforcement learning. In this work, we introduce a self-supervised exploration policy by incentivizing the agent to maximize multisensory incongruity, which can be measured in two aspects: perception incongruity and action incongruity. The former represents the uncertainty in multisensory fusion model, while the latter represents the uncertainty in an agent's policy. Specifically, an alignment predictor is trained to detect whether multiple sensory inputs are aligned, the error of which is used to measure perception incongruity. The policy takes the multisensory observations with sensory-wise dropout as input and outputs actions for exploration. The variance of actions is further used to measure action incongruity. Our formulation allows the agent to learn skills by exploring in a self-supervised manner without any external rewards. Besides, our method enables the agent to learn a compact multimodal representation from hard examples, which further improves the sample efficiency of our policy learning. We demonstrate the efficacy of this formulation across a variety of benchmark environments including object manipulation and audio-visual games

    FOCUS: Object-Centric World Models for Robotics Manipulation

    Full text link
    Understanding the world in terms of objects and the possible interplays with them is an important cognition ability, especially in robotics manipulation, where many tasks require robot-object interactions. However, learning such a structured world model, which specifically captures entities and relationships, remains a challenging and underexplored problem. To address this, we propose FOCUS, a model-based agent that learns an object-centric world model. Thanks to a novel exploration bonus that stems from the object-centric representation, FOCUS can be deployed on robotics manipulation tasks to explore object interactions more easily. Evaluating our approach on manipulation tasks across different settings, we show that object-centric world models allow the agent to solve tasks more efficiently and enable consistent exploration of robot-object interactions. Using a Franka Emika robot arm, we also showcase how FOCUS could be adopted in real-world settings
    • …
    corecore