216 research outputs found

    CPU-less robotics: distributed control of biomorphs

    Get PDF
    Traditional robotics revolves around the microprocessor. All well-known demonstrations of sensory guided motor control, such as jugglers and mobile robots, require at least one CPU. Recently, the availability of fast CPUs have made real-time sensory-motor control possible, however, problems with high power consumption and lack of autonomy still remain. In fact, the best examples of real-time robotics are usually tethered or require large batteries. We present a new paradigm for robotics control that uses no explicit CPU. We use computational sensors that are directly interfaced with adaptive actuation units. The units perform motor control and have learning capabilities. This architecture distributes computation over the entire body of the robot, in every sensor and actuator. Clearly, this is similar to biological sensory- motor systems. Some researchers have tried to model the latter in software, again using CPUs. We demonstrate this idea in with an adaptive locomotion controller chip. The locomotory controller for walking, running, swimming and flying animals is based on a Central Pattern Generator (CPG). CPGs are modeled as systems of coupled non-linear oscillators that control muscles responsible for movement. Here we describe an adaptive CPG model, implemented in a custom VLSI chip, which is used to control an under-actuated and asymmetric robotic leg

    Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up

    Get PDF
    A large body of compelling evidence has been accumulated demonstrating that embodiment – the agent’s physical setup, including its shape, materials, sensors and actuators – is constitutive for any form of cognition and as a consequence, models of cognition need to be embodied. In contrast to methods from empirical sciences to study cognition, robots can be freely manipulated and virtually all key variables of their embodiment and control programs can be systematically varied. As such, they provide an extremely powerful tool of investigation. We present a robotic bottom-up or developmental approach, focusing on three stages: (a) low-level behaviors like walking and reflexes, (b) learning regularities in sensorimotor spaces, and (c) human-like cognition. We also show that robotic based research is not only a productive path to deepening our understanding of cognition, but that robots can strongly benefit from human-like cognition in order to become more autonomous, robust, resilient, and safe

    Whisking with robots from rat vibrissae to biomimetic technology for active touch

    Get PDF
    This article summarizes some of the key features of the rat vibrissal system, including the actively controlled sweeping movements of the vibrissae known as whisking, and reviews the past and ongoing research aimed at replicating some of this functionality in biomimetic robots

    A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks

    Get PDF
    Biological intelligence processes information using impulses or spikes, which makes those living creatures able to perceive and act in the real world exceptionally well and outperform state-of-the-art robots in almost every aspect of life. To make up the deficit, emerging hardware technologies and software knowledge in the fields of neuroscience, electronics, and computer science have made it possible to design biologically realistic robots controlled by spiking neural networks (SNNs), inspired by the mechanism of brains. However, a comprehensive review on controlling robots based on SNNs is still missing. In this paper, we survey the developments of the past decade in the field of spiking neural networks for control tasks, with particular focus on the fast emerging robotics-related applications. We first highlight the primary impetuses of SNN-based robotics tasks in terms of speed, energy efficiency, and computation capabilities. We then classify those SNN-based robotic applications according to different learning rules and explicate those learning rules with their corresponding robotic applications. We also briefly present some existing platforms that offer an interaction between SNNs and robotics simulations for exploration and exploitation. Finally, we conclude our survey with a forecast of future challenges and some associated potential research topics in terms of controlling robots based on SNNs

    CPU-less robotics: distributed control of biomorphs

    Get PDF
    Traditional robotics revolves around the microprocessor. All well-known demonstrations of sensory guided motor control, such as jugglers and mobile robots, require at least one CPU. Recently, the availability of fast CPUs have made real-time sensory-motor control possible, however, problems with high power consumption and lack of autonomy still remain. In fact, the best examples of real-time robotics are usually tethered or require large batteries. We present a new paradigm for robotics control that uses no explicit CPU. We use computational sensors that are directly interfaced with adaptive actuation units. The units perform motor control and have learning capabilities. This architecture distributes computation over the entire body of the robot, in every sensor and actuator. Clearly, this is similar to biological sensory- motor systems. Some researchers have tried to model the latter in software, again using CPUs. We demonstrate this idea in with an adaptive locomotion controller chip. The locomotory controller for walking, running, swimming and flying animals is based on a Central Pattern Generator (CPG). CPGs are modeled as systems of coupled non-linear oscillators that control muscles responsible for movement. Here we describe an adaptive CPG model, implemented in a custom VLSI chip, which is used to control an under-actuated and asymmetric robotic leg

    Evolutionary morphogenesis for multi-cellular systems

    Get PDF
    With a gene required for each phenotypic trait, direct genetic encodings may show poor scalability to increasing phenotype length. Developmental systems may alleviate this problem by providing more efficient indirect genotype to phenotype mappings. A novel classification of multi-cellular developmental systems in evolvable hardware is introduced. It shows a category of developmental systems that up to now has rarely been explored. We argue that this category is where most of the benefits of developmental systems lie (e.g. speed, scalability, robustness, inter-cellular and environmental interactions that allow fault-tolerance or adaptivity). This article describes a very simple genetic encoding and developmental system designed for multi-cellular circuits that belongs to this category. We refer to it as the morphogenetic system. The morphogenetic system is inspired by gene expression and cellular differentiation. It focuses on low computational requirements which allows fast execution and a compact hardware implementation. The morphogenetic system shows better scalability compared to a direct genetic encoding in the evolution of structures of differentiated cells, and its dynamics provides fault-tolerance up to high fault rates. It outperforms a direct genetic encoding when evolving spiking neural networks for pattern recognition and robot navigation. The results obtained with the morphogenetic system indicate that this "minimalist” approach to developmental systems merits further stud

    An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot

    Get PDF
    In this work, we present a neuromorphic architecture for head pose estimation and scene representation for the humanoid iCub robot. The spiking neuronal network is fully realized in Intel's neuromorphic research chip, Loihi, and precisely integrates the issued motor commands to estimate the iCub's head pose in a neuronal path-integration process. The neuromorphic vision system of the iCub is used to correct for drift in the pose estimation. Positions of objects in front of the robot are memorized using on-chip synaptic plasticity. We present real-time robotic experiments using 2 degrees of freedom (DoF) of the robot's head and show precise path integration, visual reset, and object position learning on-chip. We discuss the requirements for integrating the robotic system and neuromorphic hardware with current technologies

    Towards a Dynamic Vision System - Computational Modelling of Insect Motion Sensitive Neural Systems

    Get PDF
    For motion perception, vision plays an irreplaceable role, which can extract more abundant useful movement features from an unpredictable dynamic environment compared to other sensing modalities. Nowadays, building a dynamic vision system for motion perception in a both reliable and efficient manner is still an open challenge. Millions of years of evolutionary development has provided, in nature, animals that possess robust vision systems capable of motion perception to deal with a variety of aspects of life. Insects, in particular, have a relatively smaller number of visual neurons compared to vertebrates and humans, but can still navigate smartly through visually cluttered and dynamic environments. Understanding the insects' visual processing pathways and methods thus are not only attractive to neural system modellers but also critical in providing effective solutions for future intelligent machines. Originated from biological researches in insect visual systems, this thesis investigates computational modelling of motion sensitive neural systems and potential applications to robotics. This proposes novel modelling of the locust and fly visual systems for sensing looming and translating stimuli. Specifically, the proposed models comprise collision selective neural networks of two lobula giant movement detectors (LGMD1 and LGMD2) in locusts, and translating sensitive neural networks of direction selective neurons (DSNs) in flies, as well as hybrid visual neural systems of their combinations. In all these proposed models, the functionality of ON and OFF pathways is highlighted, which separate visual processing into parallel computation. This works effectively to realise neural characteristics of both the LGMD1 and the LGMD2 in locusts and plays crucial roles in separating the different looming selectivity between the two visual neurons. Such a biologically plausible structure can also implement the fly DSNs for translational movements perception and guide fast motion tracking with a behavioural response to visual fixation. The effectiveness and flexibility of the proposed motion sensitive neural systems have been validated by systematic and comparative experiments ranging from off-line synthetic and real-world tests to on-line bio-robotic tests. The underlying characteristics and functionality of the locust LGMDs and the fly DSNs have been achieved by the proposed models. All the proposed visual models have been successfully realised on the embedded system in a vision-based ground mobile robot. The robot tests have verified the computational simplicity and efficiency of proposed bio-inspired methodologies, which hit at great potential of building neuromorphic sensors in autonomous machines for motion perception in a fast, reliable and low-energy manner

    Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review

    Get PDF
    Motion perception is a critical capability determining a variety of aspects of insects' life, including avoiding predators, foraging and so forth. A good number of motion detectors have been identified in the insects' visual pathways. Computational modelling of these motion detectors has not only been providing effective solutions to artificial intelligence, but also benefiting the understanding of complicated biological visual systems. These biological mechanisms through millions of years of evolutionary development will have formed solid modules for constructing dynamic vision systems for future intelligent machines. This article reviews the computational motion perception models originating from biological research of insects' visual systems in the literature. These motion perception models or neural networks comprise the looming sensitive neuronal models of lobula giant movement detectors (LGMDs) in locusts, the translation sensitive neural systems of direction selective neurons (DSNs) in fruit flies, bees and locusts, as well as the small target motion detectors (STMDs) in dragonflies and hover flies. We also review the applications of these models to robots and vehicles. Through these modelling studies, we summarise the methodologies that generate different direction and size selectivity in motion perception. At last, we discuss about multiple systems integration and hardware realisation of these bio-inspired motion perception models
    • …
    corecore