198 research outputs found

    Cryptographic reverse firewalls for interactive proof systems

    Get PDF
    We study interactive proof systems (IPSes) in a strong adversarial setting where the machines of *honest parties* might be corrupted and under control of the adversary. Our aim is to answer the following, seemingly paradoxical, questions: - Can Peggy convince Vic of the veracity of an NP statement, without leaking any information about the witness even in case Vic is malicious and Peggy does not trust her computer? - Can we avoid that Peggy fools Vic into accepting false statements, even if Peggy is malicious and Vic does not trust her computer? At EUROCRYPT 2015, Mironov and Stephens-Davidowitz introduced cryptographic reverse firewalls (RFs) as an attractive approach to tackling such questions. Intuitively, a RF for Peggy/Vic is an external party that sits between Peggy/Vic and the outside world and whose scope is to sanitize Peggy's/Vic's incoming and outgoing messages in the face of subversion of her/his computer, e.g. in order to destroy subliminal channels. In this paper, we put forward several natural security properties for RFs in the concrete setting of IPSes. As our main contribution, we construct efficient RFs for different IPSes derived from a large class of Sigma protocols that we call malleable. A nice feature of our design is that it is completely transparent, in the sense that our RFs can be directly applied to already deployed IPSes, without the need to re-implement them

    Subvert KEM to Break DEM: Practical Algorithm-Substitution Attacks on Public-Key Encryption

    Get PDF
    Motivated by the currently widespread concern about mass surveillance of encrypted communications, Bellare \emph{et al.} introduced at CRYPTO 2014 the notion of Algorithm-Substitution Attack (ASA) where the legitimate encryption algorithm is replaced by a subverted one that aims to undetectably exfiltrate the secret key via ciphertexts. Practically implementable ASAs on various cryptographic primitives (Bellare \emph{et al.}, CRYPTO\u2714 \& ACM CCS\u2715; Ateniese \emph{et al.}, ACM CCS\u2715; Berndt and Liśkiewicz, ACM CCS\u2717) have been constructed and analyzed, leaking the secret key successfully. Nevertheless, in spite of much progress, the practical impact of ASAs (formulated originally for symmetric key cryptography) on public-key (PKE) encryption operations remains unclear, primarily since the encryption operation of PKE does not involve the secret key, and also previously known ASAs become relatively inefficient for leaking the plaintext due to the logarithmic upper bound of exfiltration rate (Berndt and Liśkiewicz, ACM CCS\u2717). In this work, we formulate a practical ASA on PKE encryption algorithm which, perhaps surprisingly, turns out to be much more efficient and robust than existing ones, showing that ASAs on PKE schemes are far more effective and dangerous than previously believed. We mainly target PKE of hybrid encryption which is the most prevalent way to employ PKE in the literature and in practice. The main strategy of our ASA is to subvert the underlying key encapsulation mechanism (KEM) so that the session key encapsulated could be efficiently extracted, which, in turn, breaks the data encapsulation mechanism (DEM) enabling us to learn the plaintext itself. Concretely, our non-black-box yet quite general attack enables recovering the plaintext from only two successive ciphertexts and minimally depends on a short state of previous internal randomness. A widely used class of KEMs is shown to be subvertible by our powerful attack. Our attack relies on a novel identification and formalization of certain properties that yield practical ASAs on KEMs. More broadly, it points at and may shed some light on exploring structural weaknesses of other ``composed cryptographic primitives,\u27\u27 which may make them susceptible to more dangerous ASAs with effectiveness that surpasses the known logarithmic upper bound (i.e., reviewing composition as an attack enabler)

    Subversion-Resilient Signatures without Random Oracles

    Get PDF
    In the aftermath of the Snowden revelations in 2013, concerns about the integrity and security of cryptographic systems have grown significantly. As adversaries with substantial resources might attempt to subvert cryptographic algorithms and undermine their intended security guarantees, the need for subversion-resilient cryptography has become paramount. Security properties are preserved in subversion-resilient schemes, even if the adversary implements the scheme used in the security experiment. This paper addresses this pressing concern by introducing novel constructions of subversion-resilient signatures and hash functions while proving the subversion-resilience of existing cryptographic primitives. Our main contribution is the first construction of subversion-resilient signatures under complete subversion in the offline watchdog model (with trusted amalgamation) without relying on random oracles. We demonstrate that one-way permutations naturally yield subversion-resilient one-way functions, thereby enabling us to establish the subversion-resilience of Lamport signatures, assuming a trusted comparison is available. Additionally, we develop subversion-resilient target-collision-resistant hash functions using a trusted XOR. By leveraging this approach, we expand the arsenal of cryptographic tools that can withstand potential subversion attacks. Our research builds upon previous work in the offline watchdog model with trusted amalgamation (Russell et al. ASIACRYPT\u2716) and subversion-resilient pseudo-random functions (Bemmann et al. ACNS\u2723), culminating in the formal proof of subversion-resilience for the classical Naor-Yung signature construction

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Subverting Decryption in AEAD

    Get PDF
    This work introduces a new class of Algorithm Substitution Attack (ASA) on Symmetric Encryption Schemes. ASAs were introduced by Bellare, Paterson and Rogaway in light of revelations concerning mass surveillance. An ASA replaces an encryption scheme with a subverted version that aims to reveal information to an adversary engaged in mass surveillance, while remaining undetected by users. Previous work posited that a particular class of AEAD scheme (satisfying certain correctness and uniqueness properties) is resilient against subversion. Many if not all real-world constructions – such as GCM, CCM and OCB – are members of this class. Our results stand in opposition to those prior results. We present a potent ASA that generically applies to any AEAD scheme, is undetectable in all previous frameworks and which achieves successful exfiltration of user keys. We give even more efficient non-generic attacks against a selection of AEAD implementations that are most used in practice. In contrast to prior work, our new class of attack targets the decryption algorithm rather than encryption. We argue that this attack represents an attractive opportunity for a mass surveillance adversary. Our work serves to refine the ASA model and contributes to a series of papers that raises awareness and understanding about what is possible with ASAs

    ASAP: Algorithm Substitution Attacks on Cryptographic Protocols

    Get PDF
    The security of digital communication relies on few cryptographic protocols that are used to protect internet traffic, from web sessions to instant messaging. These protocols and the cryptographic primitives they rely on have been extensively studied and are considered secure. Yet, sophisticated attackers are often able to bypass rather than break security mechanisms. Kleptography or algorithm substitution attacks (ASA) describe techniques to place backdoors right into cryptographic primitives. While highly relevant as a building block, we show that the real danger of ASAs is their use in cryptographic protocols. In fact, we show that highly desirable security properties of these protocols - forward secrecy and post-compromise security - imply the applicability of ASAs. We then analyze the application of ASAs in three widely used protocols: TLS, WireGuard, and Signal. We show that these protocols can be easily subverted by carefully placing ASAs. Our analysis shows that careful design of ASAs makes detection unlikely while leaking long-term secrets within a few messages in the case of TLS and WireGuard, allowing impersonation attacks. In contrast,Signal\u27s double-ratchet protocol shows higher immunity to ASAs, as the leakage requires much more messages

    Defining a sample template for governmental procurements of cryptographic products

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 46-47)Text in English; Abstract: Turkish and Englishxi, 47 leavesIt is a well-known truth that nobody can easily find a law, act, directive, code or a publicly available technical specification which describe crytopgraphic-based security systems and/or cryptographic modules in Turkey. Besides that, from the international aspect, the only government released standarts take place in the "Federal Information Standarts Publication (FIPS) 140-2", published by United States "National Institute of Standarts and Technology (NIST)" on May 25th, 2001 (which became the international standart after Final Commitee Document accepted as "ISO/IEC 19790:2006" on March 9th, 2006) which specifies the security requirements that should be satisfied by a cryptographic module.Since the protection of sensitive and valuable (sometimes lifecritical) data transfered via critical governmental cryptographic systems is very important and requires high confidentiality, the need for defining a sample template technical specification of those cryptographic systems is that much high.The sample template specification which is made up in this study aims to be a starting point or initiative for preparing a cryptographic module specification in governmental procurements
    • …
    corecore