1,252 research outputs found

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime

    Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

    Full text link
    We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.Comment: Graph Drawing 201

    Orderly Spanning Trees with Applications

    Full text link
    We introduce and study the {\em orderly spanning trees} of plane graphs. This algorithmic tool generalizes {\em canonical orderings}, which exist only for triconnected plane graphs. Although not every plane graph admits an orderly spanning tree, we provide an algorithm to compute an {\em orderly pair} for any connected planar graph GG, consisting of a plane graph HH of GG, and an orderly spanning tree of HH. We also present several applications of orderly spanning trees: (1) a new constructive proof for Schnyder's Realizer Theorem, (2) the first area-optimal 2-visibility drawing of GG, and (3) the best known encodings of GG with O(1)-time query support. All algorithms in this paper run in linear time.Comment: 25 pages, 7 figures, A preliminary version appeared in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), Washington D.C., USA, January 7-9, 2001, pp. 506-51

    Computable Categoricity of Trees of Finite Height

    Get PDF
    We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n ≥ 1 in ω, there exists a computable tree of finite height which is ∆0n+1-categorical but not ∆0n-categorical
    • …
    corecore