3 research outputs found

    Self-Consistent Two-Gap Description of MgB2 Superconductor

    No full text
    A self-consistent two-gap γ -model is used to quantitatively describe several thermodynamic properties of MgB 2 superconductor. The superconducting coupling matrix, ν i j , was obtained from the fitting of the superfluid density in the entire superconducting temperature range. Using this input, temperature-dependent superconducting gaps, specific heat, and upper critical fields were calculated with no adjustable parameters and compared with the experimental data as well as with the first-principles calculations. The observed agreement between fit and data shows that γ -model provides adequate quantitative description of the two-gap superconductivity in MgB 2 and may serve as a relatively simple and versatile self-consistent description of the thermodynamic quantities in multi-gap superconductors

    Self-Consistent Two-Gap Description of MgB2 Superconductor

    Get PDF
    A self-consistent two-gap γ -model is used to quantitatively describe several thermodynamic properties of MgB 2 superconductor. The superconducting coupling matrix, νij , was obtained from the fitting of the superfluid density in the entire superconducting temperature range. Using this input, temperature-dependent superconducting gaps, specific heat, and upper critical fields were calculated with no adjustable parameters and compared with the experimental data as well as with the first-principles calculations. The observed agreement between fit and data shows that γ -model provides adequate quantitative description of the two-gap superconductivity in MgB 2 and may serve as a relatively simple and versatile self-consistent description of the thermodynamic quantities in multi-gap superconductors.</p
    corecore