12,510 research outputs found

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability

    Recursive Attentive Methods with Reused Item Representations for Sequential Recommendation

    Full text link
    Sequential recommendation aims to recommend the next item of users' interest based on their historical interactions. Recently, the self-attention mechanism has been adapted for sequential recommendation, and demonstrated state-of-the-art performance. However, in this manuscript, we show that the self-attention-based sequential recommendation methods could suffer from the localization-deficit issue. As a consequence, in these methods, over the first few blocks, the item representations may quickly diverge from their original representations, and thus, impairs the learning in the following blocks. To mitigate this issue, in this manuscript, we develop a recursive attentive method with reused item representations (RAM) for sequential recommendation. We compare RAM with five state-of-the-art baseline methods on six public benchmark datasets. Our experimental results demonstrate that RAM significantly outperforms the baseline methods on benchmark datasets, with an improvement of as much as 11.3%. Our stability analysis shows that RAM could enable deeper and wider models for better performance. Our run-time performance comparison signifies that RAM could also be more efficient on benchmark datasets

    Modeling Sequences as Star Graphs to Address Over-smoothing in Self-attentive Sequential Recommendation

    Full text link
    Self-attention (SA) mechanisms have been widely used in developing sequential recommendation (SR) methods, and demonstrated state-of-the-art performance. However, in this paper, we show that self-attentive SR methods substantially suffer from the over-smoothing issue that item embeddings within a sequence become increasingly similar across attention blocks. As widely demonstrated in the literature, this issue could lead to a loss of information in individual items, and significantly degrade models' scalability and performance. To address the over-smoothing issue, in this paper, we view items within a sequence constituting a star graph and develop a method, denoted as MSSG, for SR. Different from existing self-attentive methods, MSSG introduces an additional internal node to specifically capture the global information within the sequence, and does not require information propagation among items. This design fundamentally addresses the over-smoothing issue and enables MSSG a linear time complexity with respect to the sequence length. We compare MSSG with ten state-of-the-art baseline methods on six public benchmark datasets. Our experimental results demonstrate that MSSG significantly outperforms the baseline methods, with an improvement of as much as 10.10%. Our analysis shows the superior scalability of MSSG over the state-of-the-art self-attentive methods. Our complexity analysis and run-time performance comparison together show that MSSG is both theoretically and practically more efficient than self-attentive methods. Our analysis of the attention weights learned in SA-based methods indicates that on sparse recommendation data, modeling dependencies in all item pairs using the SA mechanism yields limited information gain, and thus, might not benefit the recommendation performanceComment: arXiv admin note: text overlap with arXiv:2209.0799

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models
    • …
    corecore