1,224,692 research outputs found

    Self-adjusting assembly jig

    Get PDF
    Jig adjusts for thermal expansion and contraction to hold parts being joined under constant pressure and in correct alignment during entire joining operation. Jig is simple and easy to use, durable and maintenance free. Several methods may be used to join parts of many sizes and shapes

    Biocatalytic self-assembly cascades

    Get PDF
    The properties of supramolecular materials are dictated by both kinetic and thermodynamic aspects, providing opportunities to dynamically regulate morphology and function. Herein, we demonstrate time-dependent regulation of supramolecular self-assembly by connected, kinetically competing enzymatic reactions. Starting from Fmoc-tyrosine phosphate and phenylalanine amide in the presence of an amidase and phosphatase, four distinct self-assembling molecules may be formed which each give rise to distinct morphologies (spheres, fibers, tubes/tapes and sheets). By varying the sequence or ratio in which the enzymes are added to mixtures of precursors, these structures can be (transiently) accessed and interconverted. The approach provides insights into dynamic self-assembly using competing pathways that may aid the design of soft nanostructures with tunable dynamic properties and life times

    The Statistical Mechanics of Dynamic Pathways to Self-assembly

    Full text link
    We describe some of the important physical characteristics of the `pathways', i.e. dynamical processes, by which molecular, nanoscale and micron-scale self-assembly occurs. We highlight the fact that there exist features of self-assembly pathways that are common to a wide range of physical systems, even though those systems may be different in respect of their microscopic details. We summarize some existing theoretical descriptions of self-assembly pathways, and highlight areas -- notably, the description of self-assembly pathways that occur `far' from equilibrium -- that are likely to become increasingly important.Comment: To appear in Annual Review of Physical Chemistr

    Approximate Self-Assembly of the Sierpinski Triangle

    Full text link
    The Tile Assembly Model is a Turing universal model that Winfree introduced in order to study the nanoscale self-assembly of complex (typically aperiodic) DNA crystals. Winfree exhibited a self-assembly that tiles the first quadrant of the Cartesian plane with specially labeled tiles appearing at exactly the positions of points in the Sierpinski triangle. More recently, Lathrop, Lutz, and Summers proved that the Sierpinski triangle cannot self-assemble in the "strict" sense in which tiles are not allowed to appear at positions outside the target structure. Here we investigate the strict self-assembly of sets that approximate the Sierpinski triangle. We show that every set that does strictly self-assemble disagrees with the Sierpinski triangle on a set with fractal dimension at least that of the Sierpinski triangle (roughly 1.585), and that no subset of the Sierpinski triangle with fractal dimension greater than 1 strictly self-assembles. We show that our bounds are tight, even when restricted to supersets of the Sierpinski triangle, by presenting a strict self-assembly that adds communication fibers to the fractal structure without disturbing it. To verify this strict self-assembly we develop a generalization of the local determinism method of Soloveichik and Winfree

    Self-assembly and dis-assembly of stimuli responsive tadpole-like single chain nanoparticles using a switchable hydrophilic/hydrophobic boronic acid cross-linker

    Get PDF
    Living systems are driven by molecular machines that are composed of folded polypeptide chains, which are assembled together to form multimeric complexes. Although replicating this type of system is a longstanding goal in polymer science, the complexity the structures impose is synthetically very challenging, and generating synthetic polymers to mimic the process of these assemblies appears to be a more appealing approach. To this end, we report a linear polymer programmable for stepwise folding and assembly to higher order structures. To achieve this, a diblock copolymer composed of 4-acryloylmorpholine and glycerol acrylate was synthesised with high precision via reversible addition fragmentation chain transfer polymerisation (Đ < 1.22). Both intramolecular folding and intermolecular assembly were driven by a pH responsive cross-linker, benzene-1,4-diboronic acid. The resulting intramolecular folded single chain nanoparticles were well defined (Đ < 1.16) and successfully assembled into a multimeric structure (Dh = 245 nm) at neutral pH with no chain entanglement. The assembled multimer was observed with a spherical morphology as confirmed by TEM and AFM. These structures were capable of unfolding and disassembling either at low pH or in the presence of sugar. This work offers a new perspective for the generation of adaptive smart materials
    corecore