1 research outputs found

    Resource Allocation and Relay Selection for Multi-User OFDM-Based Cooperative Networks with SWIPT

    Get PDF
    In this paper, we investigate resource allocation and relay selection in a two-hop relay-assisted multi-user network, where the end users support Simultaneous Wireless Information and Power Transfer (SWIPT). In particular, we consider single source assisted by a set of spatially distributed relays able to amplify-and-forward orthogonal frequency division multiplexing (OFDM) signals carrying both data and power at the same time. The users are assumed to implement a power splitting technique where the received signal is orthogonally split in two streams of different power levels, where one signal stream is sent to the power harvesting module while the other is converted to baseband for information decoding. We aim at optimizing the users’ power splitting ratios as well as the relay, carrier and power assignment so that the end-users’ sum-rate is maximized subject to transmitted and harvested power constraints. Such joint optimization is combinatorial in nature with a non-convex structure. Therefore, we present a sub-optimal low complex solution based on the harmonic mean of the two-hop relay channel coefficients. Simulation results reveal that the proposed algorithm provides significant performance gains in comparison with a semi-random resource allocation and relay selection approach
    corecore