49,793 research outputs found

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape

    Outfit Recommender System

    Get PDF
    The online apparel retail market size in the United States is worth about seventy-two billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. Thus, improving recommendation systems can increase their revenue. Traditional recommendations for clothes consisted of lexical methods. However, visual-based recommendations have gained popularity over the past few years. This involves processing a multitude of images using different image processing techniques. In order to handle such a vast quantity of images, deep neural networks have been used extensively. With the help of fast Graphics Processing Units, these networks provide results which are extremely accurate, within a small amount of time. However, there are still ways in which recommendations for clothes can be improved. We propose an event-based clothing recommendation system which uses object detection. We train a model to identify nine events/scenarios that a user might attend: White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, Graduation and Workout. We train another model to detect clothes out of fifty-three categories of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the clothes detected are recommended to the user

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    CoNet: Collaborative Cross Networks for Cross-Domain Recommendation

    Full text link
    The cross-domain recommendation technique is an effective way of alleviating the data sparse issue in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. In contrast to the matrix factorization based cross-domain techniques, our method is deep transfer learning, which can learn complex user-item interaction relationships. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is thoroughly evaluated on two large real-world datasets. It outperforms baselines by relative improvements of 7.84\% in NDCG. We demonstrate the necessity of adaptively selecting representations to transfer. Our model can reduce tens of thousands training examples comparing with non-transfer methods and still has the competitive performance with them.Comment: Deep transfer learning for recommender system

    POSGen: Personalized Opening Sentence Generation for Online Insurance Sales

    Full text link
    The insurance industry is shifting their sales mode from offline to online, in expectation to reach massive potential customers in the digitization era. Due to the complexity and the nature of insurance products, a cost-effective online sales solution is to exploit chatbot AI to raise customers' attention and pass those with interests to human agents for further sales. For high response and conversion rates of customers, it is crucial for the chatbot to initiate a conversation with personalized opening sentences, which are generated with user-specific topic selection and ordering. Such personalized opening sentence generation is challenging because (i) there are limited historical samples for conversation topic recommendation in online insurance sales and (ii) existing text generation schemes often fail to support customized topic ordering based on user preferences. We design POSGen, a personalized opening sentence generation scheme dedicated for online insurance sales. It transfers user embeddings learned from auxiliary online user behaviours to enhance conversation topic recommendation, and exploits a context management unit to arrange the recommended topics in user-specific ordering for opening sentence generation. POSGen is deployed on a real-world online insurance platform. It achieves 2.33x total insurance premium improvement through a two-month global test.Comment: IEEE BigData 202
    • …
    corecore