3 research outputs found

    Power minimization for OFDM Transmission with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper develops a sum-power minimized resource allocation (RA) algorithm subject to a sum-rate constraint for cooperative orthogonal frequency division modulation (OFDM) transmission with subcarrier-pair based opportunistic decode-and-forward (DF) relaying. The improved DF protocol first proposed in [1] is used with optimized subcarrier pairing. Instrumental to the RA algorithm design is appropriate definition of variables to represent source/relay power allocation, subcarrier pairing and transmission-mode selection elegantly, so that after continuous relaxation, the dual method and the Hungarian algorithm can be used to find an (at least approximately) optimum RA with polynomial complexity. Moreover, the bisection method is used to speed up the search of the optimum Lagrange multiplier for the dual method. Numerical results are shown to illustrate the power-reduction benefit of the improved DF protocol with optimized subcarrier pairing.Comment: 4 pages, accepted by IEEE Communications Letter

    Localization and cooperative communication methods for cognitive radio

    Get PDF
    We study localization of nearby nodes and cooperative communication for cognitive radios. Cognitive radios sensing their environment to estimate the channel gain between nodes can cooperate and adapt their transmission power to maximize the capacity of the communication between two nodes. We study the end-to-end capacity of a cooperative relaying scheme using orthogonal frequency-division modulation (OFDM) modulation, under power constraints for both the base station and the relay station. The relay uses amplify-and-forward and decodeand-forward cooperative relaying techniques to retransmit messages on a subset of the available subcarriers. The power used in the base station and the relay station transmitters is allocated to maximize the overall system capacity. The subcarrier selection and power allocation are obtained based on convex optimization formulations and an iterative algorithm. Additionally, decode-and-forward relaying schemes are allowed to pair source and relayed subcarriers to increase further the capacity of the system. The proposed techniques outperforms non-selective relaying schemes over a range of relay power budgets. Cognitive radios can be used for opportunistic access of the radio spectrum by detecting spectrum holes left unused by licensed primary users. We introduce a spectrum holes detection approach, which combines blind modulation classification, angle of arrival estimation and number of sources detection. We perform eigenspace analysis to determine the number of sources, and estimate their angles of arrival (AOA). In addition, we classify detected sources as primary or secondary users with their distinct second-orde one-conjugate cyclostationarity features. Extensive simulations carried out indicate that the proposed system identifies and locates individual sources correctly, even at -4 dB signal-to-noise ratios (SNR). In environments with a high density of scatterers, several wireless channels experience non-line-of-sight (NLOS) condition, increasing the localization error, even when the AOA estimate is accurate. We present a real-time localization solver (RTLS) for time-of-arrival (TOA) estimates using ray-tracing methods on the map of the geometry of walls and compare its performance with classical TOA trilateration localization methods. Extensive simulations and field trials for indoor environments show that our method increases the coverage area from 1.9% of the floor to 82.3 % and the accuracy by a 10-fold factor when compared with trilateration. We implemented our ray tracing model in C++ using the CGAL computational geometry algorithm library. We illustrate the real-time property of our RTLS that performs most ray tracing tasks in a preprocessing phase with time and space complexity analyses and profiling of our software

    Selective subcarrier pairing and power allocation for decode-and-forward OFDM relay systems with perfect and partial CSI

    No full text
    This thesis investigates a decode-and-forward two-hop relaying system consisting of one source, one relay and one destination, in which orthogonal frequency division multiplexing is used. The relay forwards the message received from the source on a subset of available subcarriers in the second time slot. Firstly, a subcarrier pairing and selection algorithm is proposed, assuming that perfect channel state information (CSI) is available at all nodes, then, power is allocated to both the source and relay stations under individual power constraints in order to maximize the capacity. Secondly, subcarrier selection and pairing, and power allocation (PA) under partial CSI assumption along with individual power constraints are addressed. The result is a novel distributed algorithm with low complexity maximizing the expected value of capacity at the source and relay nodes. Finally, the simulation results show that selective relaying combined with subcarrier pairing and PA improves the system capacity to a considerable extent in both perfect and partial CSI cases.Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat
    corecore