2 research outputs found

    Selective Inference and Learning Mixed Graphical Models

    Full text link
    This thesis studies two problems in modern statistics. First, we study selective inference, or inference for hypothesis that are chosen after looking at the data. The motiving application is inference for regression coefficients selected by the lasso. We present the Condition-on-Selection method that allows for valid selective inference, and study its application to the lasso, and several other selection algorithms. In the second part, we consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. We provide conditions under which our estimator is model selection consistent in the high-dimensional regime.Comment: Jason D. Lee PhD Dissertatio

    A Flexible Framework for Hypothesis Testing in High-dimensions

    Full text link
    Hypothesis testing in the linear regression model is a fundamental statistical problem. We consider linear regression in the high-dimensional regime where the number of parameters exceeds the number of samples (p>np> n). In order to make informative inference, we assume that the model is approximately sparse, that is the effect of covariates on the response can be well approximated by conditioning on a relatively small number of covariates whose identities are unknown. We develop a framework for testing very general hypotheses regarding the model parameters. Our framework encompasses testing whether the parameter lies in a convex cone, testing the signal strength, and testing arbitrary functionals of the parameter. We show that the proposed procedure controls the type I error, and also analyze the power of the procedure. Our numerical experiments confirm our theoretical findings and demonstrate that we control false positive rate (type I error) near the nominal level, and have high power. By duality between hypotheses testing and confidence intervals, the proposed framework can be used to obtain valid confidence intervals for various functionals of the model parameters. For linear functionals, the length of confidence intervals is shown to be minimax rate optimal.Comment: 45 page
    corecore