49,804 research outputs found
Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions
The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature
Development of covalent triazine frameworks as heterogeneous catalytic supports
Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks
Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol
The effects of poisoning of Pd catalysts with Bi and annealing in a polyol (ethylene glycol) were studied on the semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). An increase in the Pd:Bi ratio from 7 to 1 in the Bi-poisoned catalysts decreased the hydrogenation activity due to blocking of active sites, but increased maximum alkene yield from 91.5% for the Pd catalyst to 94–96% for all Bi-poisoned Pd catalysts, by decreasing the adsorption energy of alkene molecules and suppressing the formation of β-hydride phase. Annealing of the catalysts induced the formation of intermetallic phases and decreased its activity due to sintering of the catalytic particles and low activity of intermetallic compounds. Langmuir–Hinshelwood kinetic modelling of the experimental data showed that poisoning of Pd with Bi changed the relative adsorption constants of organic species suggesting ligand effects at high Bi content
Highly active iridium(I) complexes for the selective hydrogenation of carbon-carbon multiple bonds
New iridium(I) complexes, bearing a bulky NHC/phosphine ligand combination, have been established as extremely efficient hydrogenation catalysts that can be used at low catalyst loadings, and are compatible with functional groups which are often sensitive to more routinely employed hydrogenation methods
A comparative study on the jet loop reactor and continuos stirred tank reactor in the selective hydrogenation of palm olein (I.V.64)
Jet Loop Reactor (JLR) was developed to improve the overall performance of hydrogenation processes. Nevertheless, the application of JLR in the palm oil and oleochemical industries in Malaysia is still very much sparse. A substantial amount of investment and the lack of study conducted in Malaysia on the application of JLR have retarded the retrofitment and/or replacement of the conventional CSTR with this technology. In the wake of this, a comparative study was conducted to investigate the performance of JLR in the selective hydrogenation of palm olein with an IV of 64 in comparison to the hydrogenation in the conventional CSTR system. A pilot scale JLR with a capacity of 250 liter was used in the study. The circulation of the sample in the loop was achieved via a single speed pump. The experimental result was compared with result from the CSTR experiment. A down-scaled laboratory CSTR apparatus was used in the study for this purpose. A software package, developed via Microsoft Excel 2000 and Visual Basic Application (VBA) softwares, was used to simulate the behavior of the hydrogenation process in both, JLR and CSTR, under similar capacity. The outcome of the study showed that with the limitation of single speed pump, the JLR could not matched the superiority of CSTR in the selective hydrogenation process for it required slow reaction to produce high trans fatty acids hydrogenated product. On the positive note, the developed software package is a useful tool which allows an easy method to study the behavior of the hydrogenation process of JLR and CSTR. The prediction of the CSTR process was acceptable, but the prediction of JLR process was less accurate, revealing a maximum of 30% error. It can be concluded that the present analytical method used in the simulation of JLR required improvement on the modeling of the process, or to opt for the numerical solution, to produce a much better prediction. A retrofit method was also suggested in the study, for the possibility of fitting in the JLR facility in the existing CSTR system with minimal modification, for the system to have dual function of slow and fast reactions
Ultrasound- and microwave-assisted preparation of lead-free palladium catalysts: effects on the kinetics of diphenylacetylene semi-hydrogenation
The effect of environmentally benign enabling technologies such as ultrasound and microwaves on the preparation of the lead-free Pd catalyst has been studied. A one-pot method of the catalyst preparation using ultrasound-assisted dispersion of palladium acetate in the presence of the surfactant/capping agent and boehmite support produced the catalyst containing Pd nanoparticles and reduced the number of pores larger than 4 nm in the boehmite support. This catalyst demonstrated higher activity and selectivity. The comparison of kinetic parameters for diphenylacetylene hydrogenation showed that the catalyst obtained by using the one-pot method was seven times as active as a commercial Lindlar catalyst and selectivity towards Z-stilbene was high. Our work also illustrated that highly selective Pd/boehmite catalysts can be prepared through ultrasound-assisted dispersion and microwave-assisted reduction in water under hydrogen pressure without any surfactant
Selective hydrogenation in trickle-bed reactor. Experimental and modelling including partial wetting.
A steady state model of a trickle bed reactor is developed for the consecutive hydrogenation of 1,5,9-cyclododecatriene on a Pd/Al2O3 catalyst. Various experiments have shown that the selectivity of this reaction towards the product of interest is much lower in co-current down-flow (trickle-bed) than in up-flow. This is due to uneven liquid distribution and to partial wetting of the catalyst surface at low liquid flow rates. The non-isothermal heterogeneous model proposed here takes into account the partial wetting of the catalyst, as well as the resistances to heat and mass transfer at the gas-liquid, liquid-solid and solid-gas interfaces. It assumes that the catalyst particles can be divided into two distinct concentration zones corresponding to the wetted and dry catalyst surfaces; mass transfer between these two zones is described by a simplified diffusion mechanism. Compared to previous models assuming a uniform concentration of liquid-phase components inside the catalyst particles, this model improves the prediction of the outlet concentrations of hydrogenation products
Comparison of C═C bond hydrogenation in C-4 unsaturated nitriles over Pt/alumina
The hydrogenation of allyl cyanide (but-1-ene-4-nitrile, AC), trans- and cis-crotononitrile (E- and Z-but-2-ene nitrile, TCN and CCN), and methacrylonitrile (2-cyano-1-propene, MCN) were studied, both singly and competitively, over a Pt/alumina catalyst in the liquid phase. Each unsaturated nitrile only underwent C═C bond hydrogenation: no evidence was found for the formation of the saturated or unsaturated amine. The nonconjugated allyl cyanide was found to be the most reactive unsaturated nitrile. Activation energies for the hydrogenation of the C═C bond in AC and MCN were determined giving values of 64 ± 7 kJ mol–1 for AC and 37 ± 4 kJ mol–1 for MCN. The reaction was zero order for both nitriles. Competitive hydrogenations revealed that not only does allyl cyanide react preferentially over the other isomers but also it inhibits the hydrogenation of the other isomers. When all four nitriles were simultaneously hydrogenated, inhibition effects were easily seen suggesting that in terms of strength of bonding to the surface an order of AC > CCN > TCN ∼ MN can be generated
Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High Value Commodity Fuels and Chemicals
- …
