3 research outputs found

    Binary Segmentation of Seismic Facies Using Encoder-Decoder Neural Networks

    Full text link
    The interpretation of seismic data is vital for characterizing sediments' shape in areas of geological study. In seismic interpretation, deep learning becomes useful for reducing the dependence on handcrafted facies segmentation geometry and the time required to study geological areas. This work presents a Deep Neural Network for Facies Segmentation (DNFS) to obtain state-of-the-art results for seismic facies segmentation. DNFS is trained using a combination of cross-entropy and Jaccard loss functions. Our results show that DNFS obtains highly detailed predictions for seismic facies segmentation using fewer parameters than StNet and U-Net

    Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network

    Full text link
    Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an [email protected] of 78.67\% in our empirical evaluation

    Deep learning for lithological classification of carbonate rock micro-CT images

    Full text link
    In addition to the ongoing development, pre-salt carbonate reservoir characterization remains a challenge, primarily due to inherent geological particularities. These challenges stimulate the use of well-established technologies, such as artificial intelligence algorithms, for image classification tasks. Therefore, this work intends to present an application of deep learning techniques to identify patterns in Brazilian pre-salt carbonate rock microtomographic images, thus making possible lithological classification. Four convolutional neural network models were proposed. The first model includes three convolutional layers followed by fully connected layers and is used as a base model for the following proposals. In the next two models, we replace the max pooling layer with a spatial pyramid pooling and a global average pooling layer. The last model uses a combination of spatial pyramid pooling followed by global average pooling in place of the last pooling layer. All models are compared using original images, when possible, as well as resized images. The dataset consists of 6,000 images from three different classes. The model performances were evaluated by each image individually, as well as by the most frequently predicted class for each sample. According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second. We developed a workflow to automate and accelerate the lithology classification of Brazilian pre-salt carbonate samples by categorizing microtomographic images using deep learning algorithms in a non-destructive way.Comment: 13 pages, 8 figure
    corecore