784 research outputs found

    Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network

    Get PDF
    With more and more household objects built on planned obsolescence and consumed by a fast-growing population, hazardous waste recycling has become a critical challenge. Given the large variability of household waste, current recycling platforms mostly rely on human operators to analyze the scene, typically composed of many object instances piled up in bulk. Helping them by robotizing the unitary extraction is a key challenge to speed up this tedious process. Whereas supervised deep learning has proven very efficient for such object-level scene understanding, e.g., generic object detection and segmentation in everyday scenes, it however requires large sets of per-pixel labeled images, that are hardly available for numerous application contexts, including industrial robotics. We thus propose a step towards a practical interactive application for generating an object-oriented robotic grasp, requiring as inputs only one depth map of the scene and one user click on the next object to extract. More precisely, we address in this paper the middle issue of object seg-mentation in top views of piles of bulk objects given a pixel location, namely seed, provided interactively by a human operator. We propose a twofold framework for generating edge-driven instance segments. First, we repurpose a state-of-the-art fully convolutional object contour detector for seed-based instance segmentation by introducing the notion of edge-mask duality with a novel patch-free and contour-oriented loss function. Second, we train one model using only synthetic scenes, instead of manually labeled training data. Our experimental results show that considering edge-mask duality for training an encoder-decoder network, as we suggest, outperforms a state-of-the-art patch-based network in the present application context.Comment: This is a pre-print of an article published in Human Friendly Robotics, 10th International Workshop, Springer Proceedings in Advanced Robotics, vol 7. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-89327-3\_16, Springer Proceedings in Advanced Robotics, Siciliano Bruno, Khatib Oussama, In press, Human Friendly Robotics, 10th International Workshop,

    Self-Supervised Object-in-Gripper Segmentation from Robotic Motions

    Get PDF
    Accurate object segmentation is a crucial task in the context of robotic manipulation. However, creating sufficient annotated training data for neural networks is particularly time consuming and often requires manual labeling. To this end, we propose a simple, yet robust solution for learning to segment unknown objects grasped by a robot. Specifically, we exploit motion and temporal cues in RGB video sequences. Using optical flow estimation we first learn to predict segmentation masks of our given manipulator. Then, these annotations are used in combination with motion cues to automatically distinguish between background, manipulator and unknown, grasped object. In contrast to existing systems our approach is fully self-supervised and independent of precise camera calibration, 3D models or potentially imperfect depth data. We perform a thorough comparison with alternative baselines and approaches from literature. The object masks and views are shown to be suitable training data for segmentation networks that generalize to novel environments and also allow for watertight 3D reconstruction.Comment: 15 pages, 11 figures. Video: https://www.youtube.com/watch?v=srEwuuIIgz
    • …
    corecore