111 research outputs found

    TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach

    Get PDF
    Automatic liver and tumour segmentation in CT images are crucial in numerous clinical applications, such as postoperative assessment, surgical planning, and pathological diagnosis of hepatic diseases. However, there are still a considerable number of difficulties to overcome due to the fuzzy boundary, irregular shapes, and complex tissues of the liver. In this paper, for liver and tumor segmentation and to overcome the mentioned challenges a simple but powerful strategy is presented based on a cascade convolutional neural network. At the first, the input image is normalized using the Z-Score algorithm. This normalized image provides more information about the boundary of tumor and liver. Also, the Local Direction of Gradient (LDOG) which is a novel encoding algorithm is proposed to demonstrate some key features inside the image. The proposed encoding image is highly effective in recognizing the border of liver, even in the regions close to the touching organs. Then, a cascade CNN structure for extracting both local and semi-global features is used which utilized the original image and two other obtained images as the input data. Rather than using a complex deep CNN model with a lot of hyperparameters, we employ a simple but effective model to decrease the train and testing time. Our technique outperforms the state-of-the-art works in terms of segmentation accuracy and efficiency

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Developing advanced mathematical models for detecting abnormalities in 2D/3D medical structures.

    Get PDF
    Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D) medical structures is among the most interesting and challenging research areas in the medical imaging field. Obtaining the desired accurate automated quantification of abnormalities in medical structures is still very challenging. This is due to a large and constantly growing number of different objects of interest and associated abnormalities, large variations of their appearances and shapes in images, different medical imaging modalities, and associated changes of signal homogeneity and noise for each object. The main objective of this dissertation is to address these problems and to provide proper mathematical models and techniques that are capable of analyzing low and high resolution medical data and providing an accurate, automated analysis of the abnormalities in medical structures in terms of their area/volume, shape, and associated abnormal functionality. This dissertation presents different preliminary mathematical models and techniques that are applied in three case studies: (i) detecting abnormal tissue in the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac magnetic resonance images (MRI), (ii) detecting local cardiac diseases based on estimating the functional strain metric from cardiac cine MRI, and (iii) identifying the abnormalities in the corpus callosum (CC) brain structure—the largest fiber bundle that connects the two hemispheres in the brain—for subjects that suffer from developmental brain disorders. For detecting the abnormal tissue in the heart, a graph-cut mathematical optimization model with a cost function that accounts for the object’s visual appearance and shape is used to segment the the inner cavity. The model is further integrated with a geometric model (i.e., a fast marching level set model) to segment the outer border of the myocardial wall (the LV). Then the abnormal tissue in the myocardium wall (also called dead tissue, pathological tissue, or infarct area) is identified based on a joint Markov-Gibbs random field (MGRF) model of the image and its region (segmentation) map that accounts for the pixel intensities and the spatial interactions between the pixels. Experiments with real in-vivo data and comparative results with ground truth (identified by a radiologist) and other approaches showed that the proposed framework can accurately detect the pathological tissue and can provide useful metrics for radiologists and clinicians. To estimate the strain from cardiac cine MRI, a novel method based on tracking the LV wall geometry is proposed. To achieve this goal, a partial differential equation (PDE) method is applied to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. The main advantage of the proposed tracking method over traditional texture-based methods is its ability to track the movement and rotation of the LV wall based on tracking the geometric features of the inner, mid-, and outer walls of the LV. This overcomes noise sources that come from scanner and heart motion. To identify the abnormalities in the CC from brain MRI, the CCs are aligned using a rigid registration model and are segmented using a shape-appearance model. Then, they are mapped to a simple unified space for analysis. This work introduces a novel cylindrical mapping model, which is conformal (i.e., one to one transformation and bijective), that enables accurate 3D shape analysis of the CC in the cylindrical domain. The framework can detect abnormalities in all divisions of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole 3D analysis of the CC abnormalities instead of only area-based analysis as done by previous groups. The initial classification results based on the centerline length and CC thickness suggest that the proposed CC shape analysis is a promising supplement to the current techniques for diagnosing dyslexia. The proposed techniques in this dissertation have been successfully tested on complex synthetic and MR images and can be used to advantage in many of today’s clinical applications of computer-assisted medical diagnostics and intervention

    Development of Imaging Mass Spectrometry Analysis of Lipids in Biological and Clinically Relevant Applications

    Get PDF
    La spectromĂ©trie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employĂ©e dans plusieurs domaines et peut analyser des mĂ©langes complexes. L’imagerie par spectromĂ©trie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectromĂ©trie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions dĂ©tectĂ©s. Jusqu’à prĂ©sent, les Ă©chantillons les plus Ă©tudiĂ©s en IMS sont des sections tissulaires vĂ©gĂ©tales ou animales. Parmi les molĂ©cules couramment analysĂ©es par l’IMS, les lipides ont suscitĂ© beaucoup d'intĂ©rĂȘt. Les lipides sont impliquĂ©s dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rĂŽles, comme celui de rĂ©guler des Ă©vĂ©nements cellulaires. ConsidĂ©rant l’implication des lipides dans la biologie et la capacitĂ© du MALDI IMS Ă  les analyser, nous avons dĂ©veloppĂ© des stratĂ©gies analytiques pour la manipulation des Ă©chantillons et l’analyse de larges ensembles de donnĂ©es lipidiques. La dĂ©gradation des lipides est trĂšs importante dans l’industrie alimentaire. De la mĂȘme façon, les lipides des sections tissulaires risquent de se dĂ©grader. Leurs produits de dĂ©gradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espĂšces lipidiques pouvant nuire Ă  la prĂ©cision des mesures d’abondance. Puisque les lipides oxydĂ©s sont aussi des mĂ©diateurs importants dans le dĂ©veloppement de plusieurs maladies, leur rĂ©elle prĂ©servation devient donc critique. Dans les Ă©tudes multi-institutionnelles oĂč les Ă©chantillons sont souvent transportĂ©s d’un emplacement Ă  l’autre, des protocoles adaptĂ©s et validĂ©s, et des mesures de dĂ©gradation sont nĂ©cessaires. Nos principaux rĂ©sultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydĂ©s et des lysophospholipides dans des conditions ambiantes, une diminution de la prĂ©sence des lipides ayant des acides gras insaturĂ©s et un effet inhibitoire sur ses phĂ©nomĂšnes de la conservation des sections au froid sous N2. A tempĂ©rature et atmosphĂšre ambiantes, les phospholipides sont oxydĂ©s sur une Ă©chelle de temps typique d’une prĂ©paration IMS normale (~30 minutes). Les phospholipides sont aussi dĂ©composĂ©s en lysophospholipides sur une Ă©chelle de temps de plusieurs jours. La validation d’une mĂ©thode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athĂ©rosclĂ©rose est une maladie cardiovasculaire induite par l’accumulation de matĂ©riel cellulaire sur la paroi artĂ©rielle. Puisque l’athĂ©rosclĂ©rose est un phĂ©nomĂšne en trois dimension (3D), l'IMS 3D en sĂ©rie devient donc utile, d'une part, car elle a la capacitĂ© Ă  localiser les molĂ©cules sur la longueur totale d’une plaque athĂ©romateuse et, d'autre part, car elle peut identifier des mĂ©canismes molĂ©culaires du dĂ©veloppement ou de la rupture des plaques. l'IMS 3D en sĂ©rie fait face Ă  certains dĂ©fis spĂ©cifiques, dont beaucoup se rapportent simplement Ă  la reconstruction en 3D et Ă  l’interprĂ©tation de la reconstruction molĂ©culaire en temps rĂ©el. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athĂ©rosclĂ©rose d’une carotide humaine et d’un modĂšle murin d’athĂ©rosclĂ©rose, nous avons Ă©laborĂ© des mĂ©thodes «open-source» pour la reconstruction des donnĂ©es de l’IMS en 3D. Notre mĂ©thodologie fournit un moyen d’obtenir des visualisations de haute qualitĂ© et dĂ©montre une stratĂ©gie pour l’interprĂ©tation rapide des donnĂ©es de l’IMS 3D par la segmentation multivariĂ©e. L’analyse d’aortes d’un modĂšle murin a Ă©tĂ© le point de dĂ©part pour le dĂ©veloppement des mĂ©thodes car ce sont des Ă©chantillons mieux contrĂŽlĂ©s. En corrĂ©lant les donnĂ©es acquises en mode d’ionisation positive et nĂ©gative, l’IMS en 3D a permis de dĂ©montrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en Ă©vidence une localisation diffĂ©rentielle des acides gras libres, du cholestĂ©rol, des esters du cholestĂ©rol et des triglycĂ©rides. La segmentation multivariĂ©e des signaux lipidiques suite Ă  l’analyse par IMS d’une carotide humaine dĂ©montre une histologie molĂ©culaire corrĂ©lĂ©e avec le degrĂ© de stĂ©nose de l’artĂšre. Ces recherches aident Ă  mieux comprendre la complexitĂ© biologique de l’athĂ©rosclĂ©rose et peuvent possiblement prĂ©dire le dĂ©veloppement de certains cas cliniques. La mĂ©tastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie mĂ©tastatique du cancer colorectal primaire, un des cancers le plus frĂ©quent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectuĂ©s avec l’histopathologie avec une marge d’erreur. Nous avons utilisĂ© l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures molĂ©culaires, nous avons pu dĂ©terminer un score histopathologique quantitatif et objectif et qui corrĂšle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifiĂ© des espĂšces lipidiques individuelles qui sont discriminants des diffĂ©rentes histologies du CRCLM et qui peuvent potentiellement ĂȘtre utilisĂ©es comme des biomarqueurs pour la dĂ©termination de la rĂ©ponse Ă  la thĂ©rapie. Plus spĂ©cifiquement, nous avons trouvĂ© une sĂ©rie de plasmalogĂšnes et sphingolipides qui permettent de distinguer deux diffĂ©rents types de nĂ©crose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associĂ© avec la rĂ©ponse aux traitements chimiothĂ©rapiques, alors que l’UN est associĂ© au fonctionnement normal de la tumeur.Mass spectrometry is the measurement of the mass over charge ratio of ions. It is broadly applicable and capable of analyzing complex mixtures. Imaging mass spectrometry (IMS) is a branch of mass spectrometry that analyses ions across a surface while conserving their spatial organization on said surface. At this juncture, the most studied IMS samples are thin tissue sections from plants and animals. Among the molecules routinely imaged by IMS, lipids have generated significant interest. Lipids are important in disease and normal cell function as they form cell membranes and act as signaling molecules for cellular events among many other roles. Considering the potential of lipids in biological and clinical applications and the capability of MALDI to ionize lipids, we developed analytical strategies for the handling of samples and analysis of large lipid MALDI IMS datasets. Lipid degradation is massively important in the food industry with oxidized products producing a bad smell and taste. Similarly, lipids in thin tissue sections cut from whole tissues are subject to degradation, and their degradation products can introduce IMS artifacts and the loss of normally occurring species to degradation can skew accuracy in IMS measures of abundance. Oxidized lipids are also known to be important mediators in the progression of several diseases and their accurate preservation is critical. As IMS studies become multi-institutional and collaborations lead to sample exchange, the need for validated protocols and measures of degradation are necessary. We observed the products of lipid degradation in tissue sections from multiple mouse organs and reported on the conditions promoting and inhibiting their presence as well as the timeline of degradation. Our key findings were the increase in oxidized phospholipids and lysophospholipids from degradation at ambient conditions, the decrease in the presence of lipids containing unsaturations on their fatty acyl chains, and the inhibition of degradation by matrix coating and cold storage of sections under N2 atmosphere. At ambient atmospheric and temperature, lipids degraded into oxidized phospholipids on the time-scale of a normal IMS experiment sample preparation (within 30 min). Lipids then degraded into lysophospholipids’ on a time scale on the order of several days. Validation of sample handling is especially important when a greater number of samples are to be analyzed either through a cohort of samples, or analysis of multiple sections from a single tissue as in serial 3D IMS. Atherosclerosis is disease caused by accumulation of cellular material at the arterial wall. The accumulation implanted in the cell wall grows and eventually occludes the blood vessel, or causes a stroke. Atherosclerosis is a 3D phenomenon and serial 3D IMS is useful for its ability to localize molecules throughout the length of a plaque and help to define the molecular mechanisms of plaque development and rupture. Serial 3D IMS has many challenges, many of which are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we described 3D reconstruction methods using open-source software. Our methodology provides means to obtain high quality visualizations and demonstrates strategies for rapid interpretation of 3D IMS datasets through multivariate segmentation. Mouse aorta from model animals provided a springboard for developing the methods on lower risk samples with less variation with interesting molecular results. 3D MALDI IMS showed localized phospholipid accumulation in the mouse aortic sinuses with correlation between separate positive and negative ionization datasets. Silver-assisted LDI imaging presented differential localization of free fatty acids, cholesterol / cholesterol esters, and triglycerides. The human carotid’s 3D segmentation shows molecular histologies (spatial groupings of imaging pixels with similar spectral fingerprints) correlating to the degree of arterial stenosis. Our results outline the potential for 3D IMS in atherosclerotic research. Molecular histologies and their 3D spatial organization, obtained from the IMS techniques used herein, may predict high-risk features, and particularly identify areas of plaque that have higher-risk of rupture. These investigations would help further unravel the biological complexities of atherosclerosis, and predict clinical outcomes. Colorectal cancer liver metastasis (CRCLM) is the metastatic disease of primary colorectal cancer, one of the most common cancers worldwide. CRC is a cancer of the endothelial lining of the colon or rectum. CRC itself is often cured with surgery, while CRCLM is more deadly and treated with chemotherapy with more limited efficacy. Prognosticating and assessment of tumors is performed using classical histopathology with a margin of error. We have used lipid IMS to identify the histological compartments and extract their signatures. Using these IMS signatures we obtained a quantitative and objective histopathological score that correlates with prognosis. Additionally, by dissecting out the lipid signatures we have identified single lipid moieties that are unique to different histologies that could potentially be used as new biomarkers for assessing response to therapy. Particularly, we found a series of plasmalogen and sphingolipid species that differentiate infarct-like and usual necrosis, typical of chemotherapeutic response and normal tumor function, respectively

    A multi-technique hierarchical X-ray phase-based approach for the characterization and quantification of the effects of novel radiotherapies

    Get PDF
    Cancer is the first or second leading cause of premature deaths worldwide with an overall rapidly growing burden. Standard cancer therapies include surgery, chemotherapy and radiotherapy (RT) and often a combination of the three is applied to improve the probability of tumour control. Standard therapy protocols have been established for many types of cancers and new approaches are under study especially for treating radio-resistant tumours associated to an overall poor prognosis, as for brain and lung cancers. Follow up techniques able to monitor and investigate the effects of therapies are important for surveying the efficacy of conventionally applied treatments and are key for accessing the curing capabilities and the onset of acute and late adverse effects of new therapies. In this framework, this doctoral Thesis proposes the X-ray Phase Contrast Im-aging - Computed Tomography (XPCI-CT) technique as an imaging-based tool to study and quantify the effects of novel RTs, namely Microbeam and Minibeam Radiation therapy (MRT and MB), and to compare them to the standard Broad Beam (BB) induced effects on brain and lungs. MRT and MB are novel radiotherapies that deliver an array of spatially fractionated X-ray beamlets issued from a synchrotron radiation source, with widths of tens or hundreds of micrometres, respectively. MRT and MB exploit the so-called dose-volume effect: hundreds of Grays are well tolerated by healthy tissues and show a preferential effect on tumour cells and vasculature when delivered in a micrometric sized micro-plane, while induce lethal effects if applied over larger uniform irradiation fields. Such highly collimated X-ray beams need a high-resolution and a full-organ approach that can visualize, with high sensitivity, the effects of the treatment along and outside the beamlets path. XPCI-CT is here suggested and proven as a powerful imaging technique able to determine and quantify the effects of the radiation on normal and tumour-bearing tissues. Moreover, it is shown as an effective technique to complement, with 3D information, the histology findings in the follow-up of the RT treatments. Using a multi-scale and multi-technique X-ray-based approach, I have visualized and analysed the effects of RT delivery on healthy and glioblastoma multiforme (GBM)-bearing rat brains as well as on healthy rat lungs. Ex-vivo XPCI-CT datasets acquired with isotropic voxel sizes in the range 3.253 – 0.653 ÎŒm3 could distinguish, with high sensitivity, the idiopathic effects of MRT, MB and BB therapies. Histology, immunohistochemistry, Small- and Wide-Angle X-ray Scattering and X-ray Fluorescence experiments were also carried out to accurately interpret and complement the XPCI-CT findings as well as to obtain a detailed structural and chemical characterization of the detected pathological features. Overall, this multi-technique approach could detect: i) a different radio-sensitivity for the MRT-treated brain areas; ii) Ca and Fe deposits, hydroxyapatite crystals formation; iii) extended and isolated fibrotic contents. Full-organ XPCI-CT datasets allowed for the quantification of tumour and mi-crocalcifications’ volumes in treated brains and the amount of scarring tissue in irradiated lungs. Herein, the role of XPCI-CT as a 3D virtual histology technique for the follow-up of ex-vivo RT effects has been assessed as a complementary method for an accurate volumetric investigation of normal and pathological states in brains and lungs, in a small animal model. Moreover, the technique is proposed as a guidance and auxiliary tool for conventional histology, which is the gold standard for pathological evaluations, owing to its 3D capabilities and the possibility of virtually navigating within samples. This puts a landmark for XPCI-CT inclusion in the pre-clinical studies pipeline and for advancing towards in-vivo XPCI-CT imaging of treated organs.Weltweit gilt Krebs als hĂ€ufigste bzw. zweithĂ€ufigste Ursache eines zu frĂŒh erfolgenden Todes, wobei die Zahlen rasch ansteigen. StandardmĂ€ĂŸige Krebstherapien umfassen chirurgische Eingriffe, Chemotherapie und Strahlentherapie (radiotherapy, RT); oft kommt eine Kombination daraus zur Anwendung, um die Wahrscheinlichkeit der Tumorkontrolle zu erhöhen. Es wurden Standardtherapieprotokolle fĂŒr zahlreiche Krebsarten eingerichtet und es wird vor allem in der Behandlung von strahlenresistenten Tumoren mit allgemein schlechter Prognose wie bei Hirn- und Lungentumoren an neuen AnsĂ€tzen geforscht. Nachverfolgungstechniken, welche die Auswirkungen von Therapien ĂŒberwachen und ermitteln, sind zur Überwachung der Wirksamkeit herkömmlich angewandter Behandlungen wichtig und auch maßgeblich am Zugang zu den FĂ€higkeiten zur Heilung sowie zum Auftreten akuter und verzögerter Nebenwirkungen neuer Therapien beteiligt. In diesem Rahmenwerk unterbreitet diese Doktorarbeit die Technik der Röntgen-Phasenkontrast-Bildgebung ĂŒber Computertomographie (X-ray Phase Contrast Imaging - Computed Tomography, XPCI‑CT) als bildverarbeitungs-basiertes Tool zur Untersuchung und Quantifizierung der Auswirkungen neuartiger Strahlentherapien, nĂ€mlich der Mikrobeam- und Minibeam-Strahlentherapie (MRT und MB), sowie zum Vergleich derselben mit den herkömmlichen durch Breitstrahlen (Broad Beam, BB) erzielten Auswirkungen auf Gehirn und Lunge. MRT und MB sind neuartige Strahlentherapien, die ein Array rĂ€umlich aufgeteilter Röntgenstrahlenbeamlets aus einer synchrotronen Strahlenquelle mit einer Breite von Zehnteln bzw. Hundersteln Mikrometern abgeben. MRT und MB nutzen den sogenannten Dosis-Volumen-Effekt: Hunderte Gray werden von gesundem Gewebe gut vertragen und wirken bei der Abgabe in einer Mikroebene im Mikrometerbereich vorrangig auf Tumorzellen und BlutgefĂ€ĂŸe, wĂ€hrend sie bei einer Anwendung ĂŒber grĂ¶ĂŸere gleichförmige Strahlungsfelder letale Auswirkungen aufweisen. Solche hoch kollimierten Röntgenstrahlen erfordern eine hohe Auflösung und einen Zugang zum gesamten Organ, bei dem die Auswirkungen der Behandlung entlang und außerhalb der Beamletpfade mit hoher Empfindlichkeit visualisiert werden können. Hier empfiehlt und bewĂ€hrt sich die XPCI‑CT als leistungsstarke Bildverarbeitungstechnik, welche die Auswirkungen der Strahlung auf normale und tumortragende Gewebe feststellen und quantifizieren kann. Außerdem hat sich gezeigt, dass sie durch 3‑D-Informationen eine effektive Technik zur ErgĂ€nzung der histologischen Erkenntnisse in der Nachverfolgung der Strahlenbehandlung ist. Anhand eines mehrstufigen und multitechnischen röntgenbasierten Ansatzes habe ich die Auswirkungen der Strahlentherapie auf gesunde und von Glioblastomen (GBM) befallene Rattenhirne sowie auf gesunde Rattenlungen visualisiert und analysiert. Mit isotropen VoxelgrĂ¶ĂŸen im Bereich von 3,53 bis 0,653 ÎŒm3 erfasste Ex-vivo-XPCI-CT-DatensĂ€tze konnten die idiopathischen Auswirkungen der MRT-, MB- und BB‑Behandlung mit hoher Empfindlichkeit unterscheiden. Es wurden auch Experimente zu Histologie, Immunhistochemie, Röntgenklein- und ‑weitwinkelstreuung und Röntgenfluoreszenz durchgefĂŒhrt, um die XPCI‑CT-Erkenntnisse prĂ€zise zu interpretieren und zu ergĂ€nzen sowie eine detaillierte strukturelle und chemische Charakterisierung der nachgewiesenen pathologischen Merkmale zu erhalten. Im Allgemeinen wurde durch diesen multitechnischen Ansatz Folgendes ermittelt: i) eine un-terschiedliche Strahlenempfindlichkeit der mit MRT behandelten Gehirnbereiche; ii) Ca- und Fe-Ablagerungen und die Bildung von Hydroxylapatitkristallen; iii) ein ausgedehnter und isolierter Fibrosegehalt. XPCI‑CT-DatensĂ€tze des gesamten Organs ermöglichten die Quantifizierung der Volume von Tumoren und Mikroverkalkungen in den behandelten Gehirnen und der Menge des Narbengewebes in bestrahlten Lungen. Dabei wurde die Rolle der XPCI‑CT als virtuelle 3‑D-Histologietechnik fĂŒr die Nachverfolgung von Ex-vivo-RT‑Auswirkungen als ergĂ€nzende Methode fĂŒr eine prĂ€zise volumetrische Untersuchung des normalen und pathologischen Zustands von Gehirnen und Lungen im Kleintiermodell untersucht. DarĂŒber hinaus wird die Technik aufgrund ihrer 3‑D-FĂ€higkeiten und der Möglichkeit zur virtuellen Navigation in den Proben als Leitfaden und Hilfstool fĂŒr die herkömmliche Histologie vorgeschlagen, die der Goldstandard fĂŒr die pathologische Evaluierung ist. Dies markiert einen Meilenstein fĂŒr die Übernahme der XPCI‑CT in die Pipeline prĂ€klinischer Studien und fĂŒr den Übergang zur In-vivo-XPCI‑CT von behandelten Organen

    Deep Reinforcement Learning in Medical Object Detection and Segmentation

    Get PDF
    Medical object detection and segmentation are crucial pre-processing steps in the clinical workflow for diagnosis and therapy planning. Although deep learning methods have achieved considerable performance in this field, they impose several shortcomings, such as computational limitations, sub-optimal parameter optimization, and weak generalization. Deep reinforcement learning as the newest artificial intelligence algorithm has great potential to address the limitation of traditional deep learning methods, as well as obtaining accurate detection and segmentation results. Deep reinforcement learning has a cognitive-like process to propose the area of desirable objects, thereby facilitating accurate object detection and segmentation. In this thesis, we deploy deep reinforcement learning into two challenging and representative medical object detection and segmentation tasks: 1) Sequential-Conditional Reinforcement Learning (SCRL) for vertebral body detection and segmentation by modeling the spine anatomy with deep reinforcement learning; 2) Weakly-Supervised Teacher-Student network (WSTS) for liver tumor segmentation from the non-enhanced image by transferring tumor knowledge from the enhanced image with deep reinforcement learning. The experiment indicates our methods are effective and outperform state-of-art deep learning methods. Therefore, this thesis improves object detection and segmentation accuracy and offers researchers a novel approach based on deep reinforcement learning in medical image analysis

    Development of an image guidance system for laparoscopic liver surgery and evaluation of optical and computer vision techniques for the assessment of liver tissue

    Get PDF
    Introduction: Liver resection is increasingly being carried out via the laparoscopic approach (keyhole surgery) because there is mounting evidence that it benefits patients by reducing pain and length of hospitalisation. There are however ongoing concerns about oncological radicality (i.e. ability to completely remove cancer) and an inability to control massive haemorrhage. These issues can partially be attributed to a loss of sensation such as depth perception, tactile feedback and a reduced field of view. Utilisation of optical imaging and computer vision may be able to compensate for some of the lost sensory input because these modalities can facilitate visualisation of liver tissue and structural anatomy. Their use in laparoscopy is attractive because it is easy to adapt or integrate with existing technology. The aim of this thesis is to explore to what extent this technology can aid in the detection of normal and abnormal liver tissue and structures. / Methods: The current state of the art for optical imaging and computer vision in laparoscopic liver surgery is assessed in a systematic review. Evaluation of confocal laser endomicroscopy is carried out on a murine and porcine model of liver disease. Multispectral near infrared imaging is evaluated on ex-vivo liver specimen. Video magnification is assessed on a mechanical flow phantom and a porcine model of liver disease. The latter model was also employed to develop a computer vision based image guidance system for laparoscopic liver surgery. This image guidance system is further evaluated in a clinical feasibility study. Where appropriate, experimental findings are substantiated with statistical analysis. / Results: Use of confocal laser endomicroscopy enabled discrimination between cancer and normal liver tissue with a sub-millimetre precision. This technology also made it possible to verify the adequacy of thermal liver ablation. Multispectral imaging, at specific wavelengths was shown to have the potential to highlight the presence of colorectal and hepatocellular cancer. An image reprocessing algorithm is proposed to simplify visual interpretation of the resulting images. It is shown that video magnification can determine the presence of pulsatile motion but that it cannot reliably determine the extent of motion. Development and performance metrics of an image guidance system for laparoscopic liver surgery are outlined. The system was found to improve intraoperative orientation more development work is however required to enable reliable prediction of oncological margins. / Discussion: The results in this thesis indicate that confocal laser endomicroscopy and image guidance systems have reached a development stage where their intraoperative use may benefit surgeons by visualising features of liver anatomy and tissue characteristics. Video magnification and multispectral imaging require more development and suggestions are made to direct this work. It is also highlighted that it is crucial to standardise assessment methods for these technologies which will allow a more direct comparison between the outcomes of different groups. Limited imaging depth is a major restriction of these technologies but this may be overcome by combining them with preoperatively obtained imaging data. Just like laparoscopy, optical imaging and computer vision use functions of light, a shared characteristic that makes their combined use complementary
    • 

    corecore