458,725 research outputs found

    PanDA: Panoptic Data Augmentation

    Get PDF
    The recently proposed panoptic segmentation task presents a significant challenge of image understanding with computer vision by unifying semantic segmentation and instance segmentation tasks. In this paper we present an efficient and novel panoptic data augmentation (PanDA) method which operates exclusively in pixel space, requires no additional data or training, and is computationally cheap to implement. By retraining original state-of-the-art models on PanDA augmented datasets generated with a single frozen set of parameters, we show robust performance gains in panoptic segmentation, instance segmentation, as well as detection across models, backbones, dataset domains, and scales. Finally, the effectiveness of unrealistic-looking training images synthesized by PanDA suggest that one should rethink the need for image realism for efficient data augmentation

    Impact of adversarial examples on deep learning models for biomedical image segmentation

    Get PDF
    Deep learning models, which are increasingly being used in the field of medical image analysis, come with a major security risk, namely, their vulnerability to adversarial examples. Adversarial examples are carefully crafted samples that force machine learning models to make mistakes during testing time. These malicious samples have been shown to be highly effective in misguiding classification tasks. However, research on the influence of adversarial examples on segmentation is significantly lacking. Given that a large portion of medical imaging problems are effectively segmentation problems, we analyze the impact of adversarial examples on deep learning-based image segmentation models. Specifically, we expose the vulnerability of these models to adversarial examples by proposing the Adaptive Segmentation Mask Attack (ASMA). This novel algorithm makes it possible to craft targeted adversarial examples that come with (1) high intersection-over-union rates between the target adversarial mask and the prediction and (2) with perturbation that is, for the most part, invisible to the bare eye. We lay out experimental and visual evidence by showing results obtained for the ISIC skin lesion segmentation challenge and the problem of glaucoma optic disc segmentation. An implementation of this algorithm and additional examples can be found at https://github.com/utkuozbulak/adaptive-segmentation-mask-attack

    Text Segmentation Using Exponential Models

    Full text link
    This paper introduces a new statistical approach to partitioning text automatically into coherent segments. Our approach enlists both short-range and long-range language models to help it sniff out likely sites of topic changes in text. To aid its search, the system consults a set of simple lexical hints it has learned to associate with the presence of boundaries through inspection of a large corpus of annotated data. We also propose a new probabilistically motivated error metric for use by the natural language processing and information retrieval communities, intended to supersede precision and recall for appraising segmentation algorithms. Qualitative assessment of our algorithm as well as evaluation using this new metric demonstrate the effectiveness of our approach in two very different domains, Wall Street Journal articles and the TDT Corpus, a collection of newswire articles and broadcast news transcripts.Comment: 12 pages, LaTeX source and postscript figures for EMNLP-2 pape

    Influence of segmentation on deep iris recognition performance

    Full text link
    Despite the rise of deep learning in numerous areas of computer vision and image processing, iris recognition has not benefited considerably from these trends so far. Most of the existing research on deep iris recognition is focused on new models for generating discriminative and robust iris representations and relies on methodologies akin to traditional iris recognition pipelines. Hence, the proposed models do not approach iris recognition in an end-to-end manner, but rather use standard heuristic iris segmentation (and unwrapping) techniques to produce normalized inputs for the deep learning models. However, because deep learning is able to model very complex data distributions and nonlinear data changes, an obvious question arises. How important is the use of traditional segmentation methods in a deep learning setting? To answer this question, we present in this paper an empirical analysis of the impact of iris segmentation on the performance of deep learning models using a simple two stage pipeline consisting of a segmentation and a recognition step. We evaluate how the accuracy of segmentation influences recognition performance but also examine if segmentation is needed at all. We use the CASIA Thousand and SBVPI datasets for the experiments and report several interesting findings.Comment: 6 pages, 3 figures, 3 tables, submitted to IWBF 201

    Transferable Semi-supervised Semantic Segmentation

    Full text link
    The performance of deep learning based semantic segmentation models heavily depends on sufficient data with careful annotations. However, even the largest public datasets only provide samples with pixel-level annotations for rather limited semantic categories. Such data scarcity critically limits scalability and applicability of semantic segmentation models in real applications. In this paper, we propose a novel transferable semi-supervised semantic segmentation model that can transfer the learned segmentation knowledge from a few strong categories with pixel-level annotations to unseen weak categories with only image-level annotations, significantly broadening the applicable territory of deep segmentation models. In particular, the proposed model consists of two complementary and learnable components: a Label transfer Network (L-Net) and a Prediction transfer Network (P-Net). The L-Net learns to transfer the segmentation knowledge from strong categories to the images in the weak categories and produces coarse pixel-level semantic maps, by effectively exploiting the similar appearance shared across categories. Meanwhile, the P-Net tailors the transferred knowledge through a carefully designed adversarial learning strategy and produces refined segmentation results with better details. Integrating the L-Net and P-Net achieves 96.5% and 89.4% performance of the fully-supervised baseline using 50% and 0% categories with pixel-level annotations respectively on PASCAL VOC 2012. With such a novel transfer mechanism, our proposed model is easily generalizable to a variety of new categories, only requiring image-level annotations, and offers appealing scalability in real applications.Comment: Minor update of arXiv:1711.0682
    corecore