870,453 research outputs found
Pseudo Mask Augmented Object Detection
In this work, we present a novel and effective framework to facilitate object
detection with the instance-level segmentation information that is only
supervised by bounding box annotation. Starting from the joint object detection
and instance segmentation network, we propose to recursively estimate the
pseudo ground-truth object masks from the instance-level object segmentation
network training, and then enhance the detection network with top-down
segmentation feedbacks. The pseudo ground truth mask and network parameters are
optimized alternatively to mutually benefit each other. To obtain the promising
pseudo masks in each iteration, we embed a graphical inference that
incorporates the low-level image appearance consistency and the bounding box
annotations to refine the segmentation masks predicted by the segmentation
network. Our approach progressively improves the object detection performance
by incorporating the detailed pixel-wise information learned from the
weakly-supervised segmentation network. Extensive evaluation on the detection
task in PASCAL VOC 2007 and 2012 [12] verifies that the proposed approach is
effective
MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features
In this work, we tackle the problem of instance segmentation, the task of
simultaneously solving object detection and semantic segmentation. Towards this
goal, we present a model, called MaskLab, which produces three outputs: box
detection, semantic segmentation, and direction prediction. Building on top of
the Faster-RCNN object detector, the predicted boxes provide accurate
localization of object instances. Within each region of interest, MaskLab
performs foreground/background segmentation by combining semantic and direction
prediction. Semantic segmentation assists the model in distinguishing between
objects of different semantic classes including background, while the direction
prediction, estimating each pixel's direction towards its corresponding center,
allows separating instances of the same semantic class. Moreover, we explore
the effect of incorporating recent successful methods from both segmentation
and detection (i.e. atrous convolution and hypercolumn). Our proposed model is
evaluated on the COCO instance segmentation benchmark and shows comparable
performance with other state-of-art models.Comment: 10 pages including referenc
Statistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal microscopy images
We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and standard Shannon’s entropy on synthetic and natural images. We also show that the proposed unsupervised
statistical based approach, integrating the fractional entropy measure, leads to very satisfactory segmentation of the cell nuclei from which shape characterization can be calculated
Semi-supervised Segmentation Fusion of Multi-spectral and Aerial Images
A Semi-supervised Segmentation Fusion algorithm is proposed using consensus
and distributed learning. The aim of Unsupervised Segmentation Fusion (USF) is
to achieve a consensus among different segmentation outputs obtained from
different segmentation algorithms by computing an approximate solution to the
NP problem with less computational complexity. Semi-supervision is incorporated
in USF using a new algorithm called Semi-supervised Segmentation Fusion (SSSF).
In SSSF, side information about the co-occurrence of pixels in the same or
different segments is formulated as the constraints of a convex optimization
problem. The results of the experiments employed on artificial and real-world
benchmark multi-spectral and aerial images show that the proposed algorithms
perform better than the individual state-of-the art segmentation algorithms.Comment: A version of the manuscript was published in ICPR 201
- …
