928 research outputs found

    Hand Hygiene Assessment via Joint Step Segmentation and Key Action Scorer

    Full text link
    Hand hygiene is a standard six-step hand-washing action proposed by the World Health Organization (WHO). However, there is no good way to supervise medical staff to do hand hygiene, which brings the potential risk of disease spread. Existing action assessment works usually make an overall quality prediction on an entire video. However, the internal structures of hand hygiene action are important in hand hygiene assessment. Therefore, we propose a novel fine-grained learning framework to perform step segmentation and key action scorer in a joint manner for accurate hand hygiene assessment. Existing temporal segmentation methods usually employ multi-stage convolutional network to improve the segmentation robustness, but easily lead to over-segmentation due to the lack of the long-range dependence. To address this issue, we design a multi-stage convolution-transformer network for step segmentation. Based on the observation that each hand-washing step involves several key actions which determine the hand-washing quality, we design a set of key action scorers to evaluate the quality of key actions in each step. In addition, there lacks a unified dataset in hand hygiene assessment. Therefore, under the supervision of medical staff, we contribute a video dataset that contains 300 video sequences with fine-grained annotations. Extensive experiments on the dataset suggest that our method well assesses hand hygiene videos and achieves outstanding performance

    Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation

    Full text link
    Joint segmentation and classification of fine-grained actions is important for applications of human-robot interaction, video surveillance, and human skill evaluation. However, despite substantial recent progress in large-scale action classification, the performance of state-of-the-art fine-grained action recognition approaches remains low. We propose a model for action segmentation which combines low-level spatiotemporal features with a high-level segmental classifier. Our spatiotemporal CNN is comprised of a spatial component that uses convolutional filters to capture information about objects and their relationships, and a temporal component that uses large 1D convolutional filters to capture information about how object relationships change across time. These features are used in tandem with a semi-Markov model that models transitions from one action to another. We introduce an efficient constrained segmental inference algorithm for this model that is orders of magnitude faster than the current approach. We highlight the effectiveness of our Segmental Spatiotemporal CNN on cooking and surgical action datasets for which we observe substantially improved performance relative to recent baseline methods.Comment: Updated from the ECCV 2016 version. We fixed an important mathematical error and made the section on segmental inference cleare

    Advanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition

    Full text link
    Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However,conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We employ A-LSTM in weighted pooling RNN for emotion recognition. The A-LSTM outperforms the conventional LSTM by 5.5% relatively. The A-LSTM based weighted pooling RNN can also complement the state-of-the-art emotion classification framework. This shows the advantage of A-LSTM
    • …
    corecore