18 research outputs found

    Segmental Recurrent Neural Networks for End-to-end Speech Recognition

    Get PDF
    We study the segmental recurrent neural network for end-to-end acoustic modelling. This model connects the segmental conditional random field (CRF) with a recurrent neural network (RNN) used for feature extraction. Compared to most previous CRF-based acoustic models, it does not rely on an external system to provide features or segmentation boundaries. Instead, this model marginalises out all the possible segmentations, and features are extracted from the RNN trained together with the segmental CRF. In essence, this model is self-contained and can be trained end-to-end. In this paper, we discuss practical training and decoding issues as well as the method to speed up the training in the context of speech recognition. We performed experiments on the TIMIT dataset. We achieved 17.3 phone error rate (PER) from the first-pass decoding --- the best reported result using CRFs, despite the fact that we only used a zeroth-order CRF and without using any language model.Comment: 5 pages, 2 figures, accepted by Interspeech 201

    Multitask Learning with CTC and Segmental CRF for Speech Recognition

    Full text link
    Segmental conditional random fields (SCRFs) and connectionist temporal classification (CTC) are two sequence labeling methods used for end-to-end training of speech recognition models. Both models define a transcription probability by marginalizing decisions about latent segmentation alternatives to derive a sequence probability: the former uses a globally normalized joint model of segment labels and durations, and the latter classifies each frame as either an output symbol or a "continuation" of the previous label. In this paper, we train a recognition model by optimizing an interpolation between the SCRF and CTC losses, where the same recurrent neural network (RNN) encoder is used for feature extraction for both outputs. We find that this multitask objective improves recognition accuracy when decoding with either the SCRF or CTC models. Additionally, we show that CTC can also be used to pretrain the RNN encoder, which improves the convergence rate when learning the joint model.Comment: 5 pages, 2 figures, camera ready version at Interspeech 201
    corecore