94,596 research outputs found

    Preliminary Investigation of the Extent of Sediment Contamination in the Lower Grand River

    Get PDF
    A preliminary investigation of the nature and extent of sediment contamination in the lower Grand River was performed. Three areas in the lower Grand River exceeded sediment quality guidelines for heavy metals and selected organic chemicals. The locations and parameters of concern are listed below: Harbor Island (G20). Exceeds sediment PEL values for chromium, lead, nickel, and DDE in the top core section. Deeper core sections were extensively contaminated with heavy metals. Spring Lake (G6). Exceeds sediment PEL values for chromium, lead, cadmium, nickel, and DDE. Grand Haven (G12). Exceeds sediment PEL values for chromium and nickel. The sediments at this location exhibited a statistically significant level of toxicity to amphipods when compared to the control

    Metal water-sediment interactions and impacts on an urban ecosystem

    Get PDF
    The metal loadings and distributions are determined in water and sediment samples collected from 11 sites within the Lower Lee catchment (London, UK). Total concentrations of Cd, Cu, Pb, Hg, Ni, Sn and Zn indicate exceedances of relevant environmental water quality standards/sediment quality guidelines. Mean metal sediment concentrations were found to be highest for Zn (499.9±264.7 µg/g), Pb (175.7±83.0 µg/g) and Cu (141.1±111.0 µg/g) with Zn demonstrating elevated mean water concentrations (17.2±13.8 µg/l) followed by Ni (15.6±11.4 µg/l) and Cu(11.1±17.8 µg/l). Dynamic relationships between water and sediment phases influence metal distributions throughout the catchment

    Potential risks of metal toxicity in contaminated sediments of Deûle river in Northern France

    No full text
    International audienceThe aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deûle river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deûle river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3. cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended by USEPA

    Sediment quality index in mangrove forest

    Get PDF
    The objectives of this review are to determine the types of indices to use, to assess the current sediment quality index (SQI) of a mangrove forest and to select the appropriate index to describe the mangrove sediment quality index. Amongst the many indices considered in this review are the enrichment factors (EFs), the geo-accumulation index (Igeo), the pollution load index (PLI), the marine sediment pollution index (MSPI) and sediment quality index (SQI). The different indices give diverse perspectives of the status of mangrove sediment quality. This review also highlights the appropriate parameters that need to be used in assessing sediment quality, such as the physical, chemical and biological properties. As the comparison review, the sediment quality can be utilized for Mangrove quality index (MQI) development like to assess the heavy metal, complete laboratory parameters and a classification following the Interim Sediment Quality Guidelines ISQG, PCA and HACA. For the heavy metal content of sediment, the suggested parameters are Pb, Zn, Cu, Co and Mn. Lastly, for the indices, the enrichment factor (EFs), geo-accumulation index (Igeo), pollution load index (PLI) and marine sediment pollution index (MPSI) are used in develop SQI on mangrove forest

    Bioavailability of pesticides in freshwater sediments

    Get PDF
    In ecological risk assessment standardized sediment toxicity tests are used to predict the hazard of chemicals for sediment-living organisms. Feeding is a prerequisite in these long-term tests to avoid starvation of test organisms. Therefore, added food particles may act as vectors for the test compound. The importance of food particles as vectors, however, is dependent on several factors, for example, sorption and major uptake routes. In this thesis, laboratory experiments on the importance of pesticide sorption and uptake routes for the bioavailability to the midge Chironomus riparius in sediment toxicity test setups were performed. A feeding selectivity study showed that larvae almost exclusively fed on added food particles, and highly neglected sediment particles. Additionally, experiments on the sorption of the insecticide lindane, showed that food and peat particles (used in artificial sediment) efficiently sorbed lindane (>95% after 48 h). The binding strength of lindane was weak, facilitating particulate uptake. However, the uptake from dissolved lindane was higher than the uptake from particles. From this we concluded that toxicity may be underestimated in spiked-sediment scenarios, where hydrophobic pesticides sorb to the sediment and larvae to a large extent feed on uncontaminated food particles. Conversely, in a spiked-water scenario, the food particles may act as vector, resulting in a facilitated particulate uptake, in addition to the uptake from water. Sediment organic matter affects sorption, and thus bioavailability of pesticides. Pyrethroid toxicity was much higher in artificial sediment than in a natural sediment, indicating the simplicity and shortcomings of using artificial sediments. Interestingly, the sediment quality highly affected bioavailability in spiked-water. For example, C. riparus larvae in sediments with low organic matter content and exposed to spiked-water pyrethroids, showed lower survival, slower development, and increased adult size, than those in sediments with higher organic matter. The pyrethroid deltamethrin, showed an LC50-value (28 d) for C. riparius larvae in artificial sediment of 16 pg/L and 11 µg/kg for water- and sediment exposures, respectively, i.e. toxic effects occurred at concentrations lower than the detection limits for high-tech analytical methods. This thesis contributes to a wider understanding of processes affecting bioavailability in freshwater sediments, and in particular in standardized sediments used in toxicity testing. The understanding of test compound sorption and bioavailability is crucial for sound interpretations of toxicity tests and for the general credibility of such tests

    Metal Distribution and Short-Time Variability in Recent Sediments from the Ganges River towards the Bay of Bengal (India)

    Get PDF
    The Ganges River receives inputs from highly populated cities of India (New Delhi, Calcutta, among others) and a strong influence of anthropogenic activities until reaching the Bay of Bengal. It is a seasonal river with 80% of discharges occurring between July and October during monsoon. The land-based activities next to the shore lead to discharges of untreated domestic and industrial e uents, inputs of agricultural chemicals, discharges of organic matter (cremations), and discharges of chemicals from aquaculture farms. In spite of the UNESCO declaring Human Patrimony the National Park Sundarbans, located in the delta, contamination has increased over time and it dramatically intensifies during the monsoon period due to the flooding of the drainage basin. Vertical element distribution (Cd, Co, Hg, Ni, Pb, and Zn) was studied in sediments collected in di erent stations towards the Hügli Estuary. Results determined no vertical gradient associated with the analyzed sediment samples, which informs about severe sediment dynamic in the area that probably relates to tidal hydrodynamics and seasonal variation floods. The multivariate analysis results showed di erent associations among metals and in some cases between some of them (Co, Zn, Pb, and Cu) and the organic carbon. These allow the identification of di erent geochemical processes in the area and their relationship with the sources of contamination such as discharge of domestic and industrial e uents and di use sources enhanced by the monsoons. Also, an environmental risk value was given to the studied area by comparing the analyzed concentrations to quality guidelines adopted in other countries. It showed an estimated risk associated with the concentration of the metal Cu measured in the area of Kadwip

    A circumpolar perspective on fluvial sediment flux to the Arctic ocean

    Get PDF
    Quantification of sediment fluxes from rivers is fundamental to understanding land‐ocean linkages in the Arctic. Numerous publications have focused on this subject over the past century, yet assessments of temporal trends are scarce and consensus on contemporary fluxes is lacking. Published estimates vary widely, but often provide little accessory information needed to interpret the differences. We present a pan‐arctic synthesis of sediment flux from 19 arctic rivers, primarily focusing on contributions from the eight largest ones. For this synthesis, historical records and recent unpublished data were compiled from Russian, Canadian, and United States sources. Evaluation of these data revealed no long‐term trends in sediment flux, but did show stepwise changes in the historical records of two of the rivers. In some cases, old values that do not reflect contemporary fluxes are still being reported, while in other cases, typographical errors have been propagated into the recent literature. Most of the discrepancy among published estimates, however, can be explained by differences in years of records examined and gauging stations used. Variations in sediment flux from year to year in arctic rivers are large, so estimates based on relatively few years can differ substantially. To determine best contemporary estimates of sediment flux for the eight largest arctic rivers, we used a combination of newly available data, historical records, and literature values. These estimates contribute to our understanding of carbon, nutrient, and contaminant transport to the Arctic Ocean and provide a baseline for detecting future anthropogenic or natural change in the Arctic

    334200 - Stormwater Management

    Get PDF
    corecore