119,382 research outputs found

    Security analysis on a conference scheme for mobile communications

    Get PDF
    10.1109/TWC.2006.1638641IEEE Transactions on Wireless Communications561238-124

    Toward Anonymity in Delay Tolerant Networks: Threshold Pivot Scheme

    Get PDF
    Proceedings of the Military Communications Conference (MILCOM 2010), San Jose, CA, October 2010.Delay Tolerant Networks (DTNs) remove traditional assumptions of end-to-end connectivity, extending network communication to intermittently connected mobile, ad-hoc, and vehicular environments. This work considers anonymity as a vital security primitive for viable military and civilian DTNs. DTNs present new and unique anonymity challenges since we must protect physical location information as mobile nodes with limited topology knowledge naturally mix. We develop a novel Threshold Pivot Scheme (TPS) for DTNs to address these challenges and provide resistance to traffic analysis, source anonymity, and sender-receiver unlinkability. Reply techniques adapted from mix-nets allow for anonymous DTN communication, while secret sharing provides a configurable level of anonymity that enables a balance between security and efficiency. We evaluate TPS via simulation on real-world DTN scenarios to understand its feasibility, performance, and overhead while comparing the provided anonymity against an analytically optimal model

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    A Key Establishment Scheme for Mobile Wireless Sensor Networks Using Post-Deployment Knowledge

    Full text link
    Establishment of pairwise keys between sensor nodes in a sensor network is a difficult problem due to resource limitations of sensor nodes as well as vulnerability to physical captures of sensor nodes by the enemy. Public-key cryptosystems are not much suited for most resource-constrained sensor networks. Recently, elliptic curve cryptographic techniques show that public key cryptosystem is also feasible for resource-constrained sensor networks. However, most researchers accept that the symmetric key cryptosystems are viable options for resource-constrained sensor networks. In this paper, we first develop a basic principle to address the key pre-distribution problem in mobile sensor networks. Then, using this developed basic principle, we propose a scheme which takes the advantage of the post-deployment knowledge. Our scheme is a modified version of the key prioritization technique proposed by Liu and Ning. Our improved scheme provides reasonable network connectivity and security. Moreover, the proposed scheme works for any deployment topology.Comment: Published in International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.4, July 201

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore