1,254 research outputs found

    Vectors of Locally Aggregated Centers for Compact Video Representation

    Full text link
    We propose a novel vector aggregation technique for compact video representation, with application in accurate similarity detection within large video datasets. The current state-of-the-art in visual search is formed by the vector of locally aggregated descriptors (VLAD) of Jegou et. al. VLAD generates compact video representations based on scale-invariant feature transform (SIFT) vectors (extracted per frame) and local feature centers computed over a training set. With the aim to increase robustness to visual distortions, we propose a new approach that operates at a coarser level in the feature representation. We create vectors of locally aggregated centers (VLAC) by first clustering SIFT features to obtain local feature centers (LFCs) and then encoding the latter with respect to given centers of local feature centers (CLFCs), extracted from a training set. The sum-of-differences between the LFCs and the CLFCs are aggregated to generate an extremely-compact video description used for accurate video segment similarity detection. Experimentation using a video dataset, comprising more than 1000 minutes of content from the Open Video Project, shows that VLAC obtains substantial gains in terms of mean Average Precision (mAP) against VLAD and the hyper-pooling method of Douze et. al., under the same compaction factor and the same set of distortions.Comment: Proc. IEEE International Conference on Multimedia and Expo, ICME 2015, Torino, Ital

    A reliable order-statistics-based approximate nearest neighbor search algorithm

    Full text link
    We propose a new algorithm for fast approximate nearest neighbor search based on the properties of ordered vectors. Data vectors are classified based on the index and sign of their largest components, thereby partitioning the space in a number of cones centered in the origin. The query is itself classified, and the search starts from the selected cone and proceeds to neighboring ones. Overall, the proposed algorithm corresponds to locality sensitive hashing in the space of directions, with hashing based on the order of components. Thanks to the statistical features emerging through ordering, it deals very well with the challenging case of unstructured data, and is a valuable building block for more complex techniques dealing with structured data. Experiments on both simulated and real-world data prove the proposed algorithm to provide a state-of-the-art performance

    Rotation Invariant on Harris Interest Points for Exposing Image Region Duplication Forgery

    Get PDF
    Nowadays, image forgery has become common because only an editing package software and a digital camera are required to counterfeit an image. Various fraud detection systems have been developed in accordance with the requirements of numerous applications and to address different types of image forgery. However, image fraud detection is a complicated process given that is necessary to identify the image processing tools used to counterfeit an image. Here, we describe recent developments in image fraud detection. Conventional techniques for detecting duplication forgeries have difficulty in detecting postprocessing falsification, such as grading and joint photographic expert group compression. This study proposes an algorithm that detects image falsification on the basis of Hessian features

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Numerical Simulation and Design of Copy Move Image Forgery Detection Using ORB and K Means Algorithm

    Get PDF
    Copy-move is a common technique for tampering with images in the digital realm. Therefore, image security authentication is of critical importance in our society. So copy move forgery detection (CMFD) is activated in order to identify the forged portion of a photograph. A combination of the Scaled ORB and the k-means++ algorithm is used to identify this object. The first step is to identify the space on a pyramid scale, which is critical for the next step. A region's defining feature is critical to its detection. Because of this, the ORB descriptor plays an important role. Extracting FAST key points and ORB features from each scale space. The coordinates of the FAST key points have been reversed in relation to the original image. The ORB descriptors are now subjected to the k-means++ algorithm. Hammering distance is used to match the clustered features every two key points. Then, the forged key points are discovered. This information is used to draw two circles on the forged and original regions. Moment must be calculated if the forged region is rotational invariant. Geometric transformation (scaling and rotation) is possible in this method. For images that have been rotated and smoothed, this work demonstrates a method for detecting the forged region. The running time of the proposed method is less than that of the previous method

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    An Evaluation of Popular Copy-Move Forgery Detection Approaches

    Full text link
    A copy-move forgery is created by copying and pasting content within the same image, and potentially post-processing it. In recent years, the detection of copy-move forgeries has become one of the most actively researched topics in blind image forensics. A considerable number of different algorithms have been proposed focusing on different types of postprocessed copies. In this paper, we aim to answer which copy-move forgery detection algorithms and processing steps (e.g., matching, filtering, outlier detection, affine transformation estimation) perform best in various postprocessing scenarios. The focus of our analysis is to evaluate the performance of previously proposed feature sets. We achieve this by casting existing algorithms in a common pipeline. In this paper, we examined the 15 most prominent feature sets. We analyzed the detection performance on a per-image basis and on a per-pixel basis. We created a challenging real-world copy-move dataset, and a software framework for systematic image manipulation. Experiments show, that the keypoint-based features SIFT and SURF, as well as the block-based DCT, DWT, KPCA, PCA and Zernike features perform very well. These feature sets exhibit the best robustness against various noise sources and downsampling, while reliably identifying the copied regions.Comment: Main paper: 14 pages, supplemental material: 12 pages, main paper appeared in IEEE Transaction on Information Forensics and Securit

    Removal and injection of keypoints for SIFT-based copy-move counter-forensics

    Get PDF
    Recent studies exposed the weaknesses of scale-invariant feature transform (SIFT)-based analysis by removing keypoints without significantly deteriorating the visual quality of the counterfeited image. As a consequence, an attacker can leverage on such weaknesses to impair or directly bypass with alarming efficacy some applications that rely on SIFT. In this paper, we further investigate this topic by addressing the dual problem of keypoint removal, i.e., the injection of fake SIFT keypoints in an image whose authentic keypoints have been previously deleted. Our interest stemmed from the consideration that an image with too few keypoints is per se a clue of counterfeit, which can be used by the forensic analyst to reveal the removal attack. Therefore, we analyse five injection tools reducing the perceptibility of keypoint removal and compare them experimentally. The results are encouraging and show that injection is feasible without causing a successive detection at SIFT matching level. To demonstrate the practical effectiveness of our procedure, we apply the best performing tool to create a forensically undetectable copy-move forgery, whereby traces of keypoint removal are hidden by means of keypoint injection
    • …
    corecore