58 research outputs found

    Security analysis of SPAKE2+

    Get PDF
    We show that a slight variant of Protocol SPAKE2+\mathit{SPAKE2}+, which was presented but not analyzed in Cash, Kiltz, and Shoup (2008) is a secure asymmetric password-authenticated key exchange protocol (PAKE), meaning that the protocol still provides good security guarantees even if a server is compromised and the password file stored on the server is leaked to an adversary. The analysis is done in the UC framework (i.e., a simulation-based security model), under the computational Diffie-Hellman (CDH) assumption, and modeling certain hash functions as random oracles. The main difference between our variant and the original Protocol~SPAKE2+\mathit{SPAKE2}+ is that our variant includes standard key confirmation flows; also, adding these flows allows some slight simplification to the remainder of the protocol. Along the way, we also: provide the first proof (under the same assumptions) that a slight variant of Protocol SPAKE2\mathit{SPAKE2} from Abdalla and Pointcheval (2005) is a secure symmetric PAKE in the UC framework (previous security proofs were all in the weaker BPR framework of Bellare, Pointcheval, and Rogaway (2000); provide a proof (under very similar assumptions) that a variant of Protocol SPAKE2+\mathit{SPAKE2}+ that is currently being standardized is also a secure asymmetric PAKE; repair several problems in earlier UC formulations of secure symmetric and asymmetric PAKE

    Authentication and Key Management Automation in Decentralized Secure Email and Messaging via Low-Entropy Secrets

    Get PDF
    We revisit the problem of entity authentication in decentralized end-to-end encrypted email and secure messaging to propose a practical and self-sustaining cryptographic solution based on password-authenticated key exchange (PAKE). This not only allows users to authenticate each other via shared low-entropy secrets, e.g., memorable words, without a public key infrastructure or a trusted third party, but it also paves the way for automation and a series of cryptographic enhancements; improves security by minimizing the impact of human error and potentially improves usability. First, we study a few vulnerabilities in voice-based out-of-band authentication, in particular a combinatorial attack against lazy users, which we analyze in the context of a secure email solution. Next, we propose solving the problem of secure equality test using PAKE to achieve entity authentication and to establish a shared high-entropy secret key. Our solution lends itself to offline settings, compatible with the inherently asynchronous nature of email and modern messaging systems. The suggested approach enables enhancements in key management such as automated key renewal and future key pair authentications, multi-device synchronization, secure secret storage and retrieval, and the possibility of post-quantum security as well as facilitating forward secrecy and deniability in a primarily symmetric-key setting. We also discuss the use of auditable PAKEs for mitigating a class of online guess and abort attacks in authentication protocols

    On the Security Bootstrapping in Named Data Networking

    Full text link
    By requiring all data packets been cryptographically authenticatable, the Named Data Networking (NDN) architecture design provides a basic building block for secured networking. This basic NDN function requires that all entities in an NDN network go through a security bootstrapping process to obtain the initial security credentials. Recent years have witnessed a number of proposed solutions for NDN security bootstrapping protocols. Built upon the existing results, in this paper we take the next step to develop a systematic model of security bootstrapping: Trust-domain Entity Bootstrapping (TEB). This model is based on the emerging concept of trust domain and describes the steps and their dependencies in the bootstrapping process. We evaluate the expressiveness and sufficiency of this model by using it to describe several current bootstrapping protocols

    Perfect Forward Security of SPAKE2

    Get PDF
    SPAKE2 is a balanced password-authenticated key exchange (PAKE) protocol, proposed by Abdalla and Pointcheval at CTRSA 2005. Due to its simplicity and efficiency, SPAKE2 is one of the balanced PAKE candidates currently under consideration for standardization by the CFRG, together with SPEKE, CPace, and J-PAKE. In this paper, we show that SPAKE2 achieves perfect forward security in the random-oracle model under the Gap Diffie-Hellman assumption. Unlike prior results, which either did not consider forward security or only proved a weak form of it, our results guarantee the security of the derived keys even for sessions that were created with the active involvement of the attacker, as long as the parties involved in the protocol are not corrupted when these sessions take place. Finally, our proofs also demonstrate that SPAKE2 is flexible with respect to the generation of its global parameters M and N. This includes the cases where M is a uniform group element and M=N or the case where M and N are chosen as the output of a random oracle

    SoK : password-authenticated key exchange - theory, practice, standardization and real-world lessons

    Get PDF
    Password-authenticated key exchange (PAKE) is a major area of cryptographic protocol research and practice. Many PAKE proposals have emerged in the 30 years following the original 1992 Encrypted Key Exchange (EKE), some accompanied by new theoretical models to support rigorous analysis. To reduce confusion and encourage practical development, major standards bodies including IEEE, ISO/IEC and the IETF have worked towards standardizing PAKE schemes, with mixed results. Challenges have included contrasts between heuristic protocols and schemes with security proofs, and subtleties in the assumptions of such proofs rendering some schemes unsuitable for practice. Despite initial difficulty identifying suitable use cases, the past decade has seen PAKE adoption in numerous large-scale applications such as Wi-Fi, Apple's iCloud, browser synchronization, e-passports, and the Thread network protocol for Internet of Things devices. Given this backdrop, we consolidate three decades of knowledge on PAKE protocols, integrating theory, practice, standardization and real-world experience. We provide a thorough and systematic review of the field, a summary of the state-of-the-art, a taxonomy to categorize existing protocols, and a comparative analysis of protocol performance using representative schemes from each taxonomy category. We also review real-world applications, summarize lessons learned, and highlight open research problems related to PAKE protocols

    Quantifying the Security Cost of Migrating Protocols to Practice

    Get PDF
    We give a framework for relating the concrete security of a “reference” protocol (say, one appearing in an academic paper) to that of some derived, “real” protocol (say, appearing in a cryptographic standard). It is based on the indifferentiability framework of Maurer, Renner, and Holenstein (MRH), whose application has been exclusively focused upon non-interactive cryptographic primitives, e.g., hash functions and Feistel networks. Our extension of MRH is supported by a clearly defined execution model and two composition lemmata, all formalized in a modern pseudocode language. Together, these allow for precise statements about game-based security properties of cryptographic objects (interactive or not) at various levels of abstraction. As a real-world application, we design and prove tight security bounds for a potential TLS 1.3 extension that integrates the SPAKE2 password-authenticated key-exchange into the handshake

    EKE Meets Tight Security in the Universally Composable Framework

    Get PDF
    (Asymmetric) Password-based Authenticated Key Exchange ((a)PAKE) protocols allow two parties establish a session key with a pre-shared low-entropy password. In this paper, we show how Encrypted Key Exchange (EKE) compiler [Bellovin and Merritt, S&P 1992] meets tight security in the Universally Composable (UC) framework. We propose a strong 2DH variant of EKE, denoted by 2DH-EKE, and prove its tight security in the UC framework based on the CDH assumption. The efficiency of 2DH-EKE is comparable to the original EKE, with only O(λ)O(\lambda) bits growth in communication (λ\lambda the security parameter), and two (resp., one) extra exponentiation in computation for client (resp., server). We also develop an asymmetric PAKE scheme 2DH-aEKE from 2DH-EKE. The security reduction loss of 2DH-aEKE is NN, the total number of client-server pairs. With a meta-reduction, we formally prove that such a factor NN is inevitable in aPAKE. Namely, our 2DH-aEKE meets the optimal security loss. As a byproduct, we further apply our technique to PAKE protocols like SPAKE2 and PPK in the relaxed UC framework, resulting in their 2DH variants with tight security from the CDH assumption

    Forward Secrecy of SPAKE2

    Get PDF
    Currently, the Simple Password-Based Encrypted Key Exchange (SPAKE2) protocol of Abdalla and Pointcheval (CT-RSA 2005) is being considered by the IETF for standardization and integration in TLS 1.3. Although it has been proven secure in the Find-then-Guess model of Bellare, Pointcheval and Rogaway (EUROCRYPT 2000), whether it satisfies some notion of forward secrecy remains an open question. In this work, we prove that the SPAKE2 protocol satisfies the so-called weak forward secrecy introduced by Krawczyk (CRYPTO 2005). Furthermore, we demonstrate that the incorporation of key-confirmation codes in SPAKE2 results in a protocol that provably satisfies the stronger notion of perfect forward secrecy. As forward secrecy is an explicit requirement for cipher suites supported in the TLS handshake, we believe this work could fill the gap in the literature and facilitate the adoption of SPAKE2 in the recently approved TLS 1.3

    Algebraic Adversaries in the Universal Composability Framework

    Get PDF
    The algebraic-group model (AGM), which lies between the generic group model and the standard model of computation, provides a means by which to analyze the security of cryptosystems against so-called algebraic adversaries. We formalize the AGM within the framework of universal composability, providing formal definitions for this setting and proving an appropriate composition theorem. This extends the applicability of the AGM to more-complex protocols, and lays the foundations for analyzing algebraic adversaries in a composable fashion. Our results also clarify the meaning of composing proofs in the AGM with other proofs and they highlight a natural form of independence between idealized groups that seems inherent to the AGM and has not been made formal before-these insights also apply to the composition of game-based proofs in the AGM. We show the utility of our model by proving several important protocols universally composable for algebraic adversaries, specifically: (1) the Chou-Orlandi protocol for oblivious transfer, and (2) the SPAKE2 and CPace protocols for password-based authenticated key exchange

    Universally Composable Relaxed Password Authenticated Key Exchange

    Get PDF
    International audienceProtocols for password authenticated key exchange (PAKE) allow two parties who share only a weak password to agree on a cryptographic key. We revisit the notion of PAKE in the universal composabil-ity (UC) framework, and propose a relaxation of the PAKE functionality of Canetti et al. that we call lazy-extraction PAKE (lePAKE). Our relaxation allows the ideal-world adversary to postpone its password guess until after a session is complete. We argue that this relaxed notion still provides meaningful security in the password-only setting. As our main result, we show that several PAKE protocols that were previously only proven secure with respect to a "game-based" definition of security can be shown to UC-realize the lePAKE functionality in the random-oracle model. These include SPEKE, SPAKE2, and TBPEKE, the most efficient PAKE schemes currently known
    corecore