5,917 research outputs found

    Online Data-driven Control Against False Data Injection Attacks

    Full text link
    The rise of cyber-security concerns has brought significant attention to the analysis and design of cyber-physical systems (CPSs). Among the various types of cyberattacks, denial-of-service (DoS) attacks and false data injection (FDI) attacks can be easily launched and have become prominent threats. While resilient control against DoS attacks has received substantial research efforts, countermeasures developed against FDI attacks have been relatively limited, particularly when explicit system models are not available. To address this gap, the present paper focuses on the design of data-driven controllers for unknown linear systems subject to FDI attacks on the actuators, utilizing input-state data. To this end, a general FDI attack model is presented, which imposes minimally constraints on the switching frequency of attack channels and the magnitude of attack matrices. A dynamic state feedback control law is designed based on offline and online input-state data, which adapts to the channel switching of FDI attacks. This is achieved by solving two data-based semi-definite programs (SDPs) on-the-fly to yield a tight approximation of the set of subsystems consistent with both offline clean data and online attack-corrupted data. It is shown that under mild conditions on the attack, the proposed SDPs are recursively feasible and controller achieves exponential stability. Numerical examples showcase its effectiveness in mitigating the impact of FDI attacks

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Cyberthreats, Attacks and Intrusion Detection in Supervisory Control and Data Acquisition Networks

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are computer-based process control systems that interconnect and monitor remote physical processes. There have been many real world documented incidents and cyber-attacks affecting SCADA systems, which clearly illustrate critical infrastructure vulnerabilities. These reported incidents demonstrate that cyber-attacks against SCADA systems might produce a variety of financial damage and harmful events to humans and their environment. This dissertation documents four contributions towards increased security for SCADA systems. First, a set of cyber-attacks was developed. Second, each attack was executed against two fully functional SCADA systems in a laboratory environment; a gas pipeline and a water storage tank. Third, signature based intrusion detection system rules were developed and tested which can be used to generate alerts when the aforementioned attacks are executed against a SCADA system. Fourth, a set of features was developed for a decision tree based anomaly based intrusion detection system. The features were tested using the datasets developed for this work. This dissertation documents cyber-attacks on both serial based and Ethernet based SCADA networks. Four categories of attacks against SCADA systems are discussed: reconnaissance, malicious response injection, malicious command injection and denial of service. In order to evaluate performance of data mining and machine learning algorithms for intrusion detection systems in SCADA systems, a network dataset to be used for benchmarking intrusion detection systemswas generated. This network dataset includes different classes of attacks that simulate different attack scenarios on process control systems. This dissertation describes four SCADA network intrusion detection datasets; a full and abbreviated dataset for both the gas pipeline and water storage tank systems. Each feature in the dataset is captured from network flow records. This dataset groups two different categories of features that can be used as input to an intrusion detection system. First, network traffic features describe the communication patterns in a SCADA system. This research developed both signature based IDS and anomaly based IDS for the gas pipeline and water storage tank serial based SCADA systems. The performance of both types of IDS were evaluates by measuring detection rate and the prevalence of false positives

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System
    corecore