707 research outputs found

    Enhancing Secrecy with Multi-Antenna Transmission in Wireless Ad Hoc Networks

    Full text link
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the networkwide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.Comment: to appear in IEEE Transactions on Information Forensics and Securit

    On the Design of Artificial-Noise-Aided Secure Multi-Antenna Transmission in Slow Fading Channels

    Full text link
    In this paper, we investigate the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. The primary design concerns include the transmit power allocation and the rate parameters of the wiretap code. We consider two scenarios with different complexity levels: i) the design parameters are chosen to be fixed for all transmissions, ii) they are adaptively adjusted based on the instantaneous channel feedback from the intended receiver. In both scenarios, we provide explicit design solutions for achieving the maximal throughput subject to a secrecy constraint, given by a maximum allowable secrecy outage probability. We then derive accurate approximations for the maximal throughput in both scenarios in the high signal-to-noise ratio region, and give new insights into the additional power cost for achieving a higher security level, whilst maintaining a specified target throughput. In the end, the throughput gain of adaptive transmission over non-adaptive transmission is also quantified and analyzed.Comment: to appear in IEEE Transactions on Vehicular Technolog

    On the Throughput Cost of Physical Layer Security in Decentralized Wireless Networks

    Full text link
    This paper studies the throughput of large-scale decentralized wireless networks with physical layer security constraints. In particular, we are interested in the question of how much throughput needs to be sacrificed for achieving a certain level of security. We consider random networks where the legitimate nodes and the eavesdroppers are distributed according to independent two-dimensional Poisson point processes. The transmission capacity framework is used to characterize the area spectral efficiency of secure transmissions with constraints on both the quality of service (QoS) and the level of security. This framework illustrates the dependence of the network throughput on key system parameters, such as the densities of legitimate nodes and eavesdroppers, as well as the QoS and security constraints. One important finding is that the throughput cost of achieving a moderate level of security is quite low, while throughput must be significantly sacrificed to realize a highly secure network. We also study the use of a secrecy guard zone, which is shown to give a significant improvement on the throughput of networks with high security requirements.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Physical Layer Security in Wireless Ad Hoc Networks Under A Hybrid Full-/Half-Duplex Receiver Deployment Strategy

    Full text link
    This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput and network-wide secrecy energy efficiency are optimized respectively. Various insights into the optimal fraction are further developed and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.Comment: Journal paper, double-column 12 pages, 9 figures, accepted by IEEE Transactions on Wireless Communications, 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secrecy Outage and Diversity Analysis of Cognitive Radio Systems

    Full text link
    In this paper, we investigate the physical-layer security of a multi-user multi-eavesdropper cognitive radio system, which is composed of multiple cognitive users (CUs) transmitting to a common cognitive base station (CBS), while multiple eavesdroppers may collaborate with each other or perform independently in intercepting the CUs-CBS transmissions, which are called the coordinated and uncoordinated eavesdroppers, respectively. Considering multiple CUs available, we propose the round-robin scheduling as well as the optimal and suboptimal user scheduling schemes for improving the security of CUs-CBS transmissions against eavesdropping attacks. Specifically, the optimal user scheduling is designed by assuming that the channel state information (CSI) of all links from CUs to CBS, to primary user (PU) and to eavesdroppers are available. By contrast, the suboptimal user scheduling only requires the CSI of CUs-CBS links without the PU's and eavesdroppers' CSI. We derive closed-form expressions of the secrecy outage probability of these three scheduling schemes in the presence of the coordinated and uncoordinated eavesdroppers. We also carry out the secrecy diversity analysis and show that the round-robin scheduling achieves the diversity order of only one, whereas the optimal and suboptimal scheduling schemes obtain the full secrecy diversity, no matter whether the eavesdroppers collaborate or not. In addition, numerical secrecy outage results demonstrate that for both the coordinated and uncoordinated eavesdroppers, the optimal user scheduling achieves the best security performance and the round-robin scheduling performs the worst. Finally, upon increasing the number of CUs, the secrecy outage probabilities of the optimal and suboptimal user scheduling schemes both improve significantly.Comment: 16 pages, 5 figures, accepted to appear, IEEE Journal on Selected Areas in Communications, 201
    corecore