87,575 research outputs found

    Towards a Formal Model of Privacy-Sensitive Dynamic Coalitions

    Full text link
    The concept of dynamic coalitions (also virtual organizations) describes the temporary interconnection of autonomous agents, who share information or resources in order to achieve a common goal. Through modern technologies these coalitions may form across company, organization and system borders. Therefor questions of access control and security are of vital significance for the architectures supporting these coalitions. In this paper, we present our first steps to reach a formal framework for modeling and verifying the design of privacy-sensitive dynamic coalition infrastructures and their processes. In order to do so we extend existing dynamic coalition modeling approaches with an access-control-concept, which manages access to information through policies. Furthermore we regard the processes underlying these coalitions and present first works in formalizing these processes. As a result of the present paper we illustrate the usefulness of the Abstract State Machine (ASM) method for this task. We demonstrate a formal treatment of privacy-sensitive dynamic coalitions by two example ASMs which model certain access control situations. A logical consideration of these ASMs can lead to a better understanding and a verification of the ASMs according to the aspired specification.Comment: In Proceedings FAVO 2011, arXiv:1204.579

    A Secure and Fair Resource Sharing Model for Community Clouds

    Get PDF
    Cloud computing has gained a lot of importance and has been one of the most discussed segment of today\u27s IT industry. As enterprises explore the idea of using clouds, concerns have emerged related to cloud security and standardization. This thesis explores whether the Community Cloud Deployment Model can provide solutions to some of the concerns associated with cloud computing. A secure framework based on trust negotiations for resource sharing within the community is developed as a means to provide standardization and security while building trust during resource sharing within the community. Additionally, a model for fair sharing of resources is developed which makes the resource availability and usage transparent to the community so that members can make informed decisions about their own resource requirements based on the resource usage and availability within the community. Furthermore, the fair-share model discusses methods that can be employed to address situations when the demand for a resource is higher than the resource availability in the resource pool. Various methods that include reduction in the requested amount of resource, early release of the resources and taxing members have been studied, Based on comparisons of these methods along with the advantages and disadvantages of each model outlined, a hybrid method that only taxes members for unused resources is developed. All these methods have been studied through simulations

    Grid Infrastructure for Domain Decomposition Methods in Computational ElectroMagnetics

    Get PDF
    The accurate and efficient solution of Maxwell's equation is the problem addressed by the scientific discipline called Computational ElectroMagnetics (CEM). Many macroscopic phenomena in a great number of fields are governed by this set of differential equations: electronic, geophysics, medical and biomedical technologies, virtual EM prototyping, besides the traditional antenna and propagation applications. Therefore, many efforts are focussed on the development of new and more efficient approach to solve Maxwell's equation. The interest in CEM applications is growing on. Several problems, hard to figure out few years ago, can now be easily addressed thanks to the reliability and flexibility of new technologies, together with the increased computational power. This technology evolution opens the possibility to address large and complex tasks. Many of these applications aim to simulate the electromagnetic behavior, for example in terms of input impedance and radiation pattern in antenna problems, or Radar Cross Section for scattering applications. Instead, problems, which solution requires high accuracy, need to implement full wave analysis techniques, e.g., virtual prototyping context, where the objective is to obtain reliable simulations in order to minimize measurement number, and as consequence their cost. Besides, other tasks require the analysis of complete structures (that include an high number of details) by directly simulating a CAD Model. This approach allows to relieve researcher of the burden of removing useless details, while maintaining the original complexity and taking into account all details. Unfortunately, this reduction implies: (a) high computational effort, due to the increased number of degrees of freedom, and (b) worsening of spectral properties of the linear system during complex analysis. The above considerations underline the needs to identify appropriate information technologies that ease solution achievement and fasten required elaborations. The authors analysis and expertise infer that Grid Computing techniques can be very useful to these purposes. Grids appear mainly in high performance computing environments. In this context, hundreds of off-the-shelf nodes are linked together and work in parallel to solve problems, that, previously, could be addressed sequentially or by using supercomputers. Grid Computing is a technique developed to elaborate enormous amounts of data and enables large-scale resource sharing to solve problem by exploiting distributed scenarios. The main advantage of Grid is due to parallel computing, indeed if a problem can be split in smaller tasks, that can be executed independently, its solution calculation fasten up considerably. To exploit this advantage, it is necessary to identify a technique able to split original electromagnetic task into a set of smaller subproblems. The Domain Decomposition (DD) technique, based on the block generation algorithm introduced in Matekovits et al. (2007) and Francavilla et al. (2011), perfectly addresses our requirements (see Section 3.4 for details). In this chapter, a Grid Computing infrastructure is presented. This architecture allows parallel block execution by distributing tasks to nodes that belong to the Grid. The set of nodes is composed by physical machines and virtualized ones. This feature enables great flexibility and increase available computational power. Furthermore, the presence of virtual nodes allows a full and efficient Grid usage, indeed the presented architecture can be used by different users that run different applications

    Towards Formal Interaction-Based Models of Grid Computing Infrastructures

    Full text link
    Grid computing (GC) systems are large-scale virtual machines, built upon a massive pool of resources (processing time, storage, software) that often span multiple distributed domains. Concurrent users interact with the grid by adding new tasks; the grid is expected to assign resources to tasks in a fair, trustworthy way. These distinctive features of GC systems make their specification and verification a challenging issue. Although prior works have proposed formal approaches to the specification of GC systems, a precise account of the interaction model which underlies resource sharing has not been yet proposed. In this paper, we describe ongoing work aimed at filling in this gap. Our approach relies on (higher-order) process calculi: these core languages for concurrency offer a compositional framework in which GC systems can be precisely described and potentially reasoned about.Comment: In Proceedings DCM 2013, arXiv:1403.768

    Solutions to Detect and Analyze Online Radicalization : A Survey

    Full text link
    Online Radicalization (also called Cyber-Terrorism or Extremism or Cyber-Racism or Cyber- Hate) is widespread and has become a major and growing concern to the society, governments and law enforcement agencies around the world. Research shows that various platforms on the Internet (low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message) such as YouTube (a popular video sharing website), Twitter (an online micro-blogging service), Facebook (a popular social networking website), online discussion forums and blogosphere are being misused for malicious intent. Such platforms are being used to form hate groups, racist communities, spread extremist agenda, incite anger or violence, promote radicalization, recruit members and create virtual organi- zations and communities. Automatic detection of online radicalization is a technically challenging problem because of the vast amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several solutions proposed in the literature aiming to combat and counter cyber-hate and cyber-extremism. In this survey, we review solutions to detect and analyze online radicalization. We review 40 papers published at 12 venues from June 2003 to November 2011. We present a novel classification scheme to classify these papers. We analyze these techniques, perform trend analysis, discuss limitations of existing techniques and find out research gaps

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure
    corecore