3 research outputs found

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the senderā€™s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    A secure architecture enabling end-user privacy in the context of commercial wide-area location-enhanced web services

    Get PDF
    Mobile location-based services have raised privacy concerns amongst mobile phone users who may need to supply their identity and location information to untrustworthy third parties in order to access these applications. Widespread acceptance of such services may therefore depend on how privacy sensitive information will be handled in order to restore usersā€™ confidence in what could become the ā€œkiller appā€ of 3G networks. The work reported in this thesis is part of a larger project to provide a secure architecture to enable the delivery of location-based services over the Internet. The security of transactions and in particular the privacy of the information transmitted has been the focus of our research. In order to protect mobile usersā€™ identities, we have designed and implemented a proxy-based middleware called the Orient Platform together with its Orient Protocol, capable of translating their real identity into pseudonyms. In order to protect usersā€™ privacy in terms of location information, we have designed and implemented a Location Blurring algorithm that intentionally downgrades the quality of location information to be used by location-based services. The algorithm takes into account a blurring factor set by the mobile user at her convenience and blurs her location by preventing real-time tracking by unauthorized entities. While it penalizes continuous location tracking, it returns accurate and reliable information in response to sporadic location queries. Finally, in order to protect the transactions and provide end-to-end security between all the entities involved, we have designed and implemented a Public Key Infrastructure based on a Security Mediator (SEM) architecture. The cryptographic algorithms used are identitybased, which makes digital certificate retrieval, path validation and revocation redundant in our environment. In particular we have designed and implemented a cryptographic scheme based on Hessā€™ work [108], which represents, to our knowledge, the first identity-based signature scheme in the SEM setting. A special private key generation process has also been developed in order to enable entities to use a single private key in conjunction with multiple pseudonyms, which significantly simplifies key management. We believe our approach satisfies the security requirements of mobile users and can help restore their confidence in location-based services

    A decision-making model to guide securing blockchain deployments

    Get PDF
    Satoshi Nakamoto, the pseudo-identity accredit with the paper that sparked the implementation of Bitcoin, is famously quoted as remarking, electronically of course, that ā€œIf you donā€™t believe it or donā€™t get it, I donā€™t have time to try and convince you, sorryā€ (Tsapis, 2019, p. 1). What is noticeable, 12 years after the famed Satoshi paper that initiated Bitcoin (Nakamoto, 2008), is that blockchain at the very least has staying power and potentially wide application. A lesser known figure Marc Kenisberg, founder of Bitcoin Chaser which is one of the many companies formed around the Bitcoin ecosystem, summarised it well saying ā€œā€¦Blockchain is the tech - Bitcoin is merely the first mainstream manifestation of its potentialā€ (Tsapis, 2019, p. 1). With blockchain still trying to reach its potential and still maturing on its way towards a mainstream technology the main question that arises for security professionals is how do I ensure we do it securely? This research seeks to address that question by proposing a decision-making model that can be used by a security professional to guide them through ensuring appropriate security for blockchain deployments. This research is certainly not the first attempt at discussing the security of the blockchain and will not be the last, as the technology around blockchain and distributed ledger technology is still rapidly evolving. What this research does try to achieve is not to delve into extremely specific areas of blockchain security, or get bogged down in technical details, but to provide a reference framework that aims to cover all the major areas to be considered. The approach followed was to review the literature regarding blockchain and to identify the main security areas to be addressed. It then proposes a decision-making model and tests the model against a fictitious but relevant real-world example. It concludes with learnings from this research. The reader can be the judge, but the model aims to be a practical valuable resource to be used by any security professional, to navigate the security aspects logically and understandably when being involved in a blockchain deployment. In contrast to the Satoshi quote, this research tries to convince the reader and assist him/her in understanding the security choices related to every blockchain deployment.Thesis (MSc) -- Faculty of Science, Computer Science, 202
    corecore