1 research outputs found

    Edge-enabled V2X Service Placement for Intelligent Transportation Systems

    Full text link
    Vehicle-to-everything (V2X) communication and services have been garnering significant interest from different stakeholders as part of future intelligent transportation systems (ITSs). This is due to the many benefits they offer. However, many of these services have stringent performance requirements, particularly in terms of the delay/latency. Multi-access/mobile edge computing (MEC) has been proposed as a potential solution for such services by bringing them closer to vehicles. Yet, this introduces a new set of challenges such as where to place these V2X services, especially given the limit computation resources available at edge nodes. To that end, this work formulates the problem of optimal V2X service placement (OVSP) in a hybrid core/edge environment as a binary integer linear programming problem. To the best of our knowledge, no previous work considered the V2X service placement problem while taking into consideration the computational resource availability at the nodes. Moreover, a low-complexity greedy-based heuristic algorithm named "Greedy V2X Service Placement Algorithm" (G-VSPA) was developed to solve this problem. Simulation results show that the OVSP model successfully guarantees and maintains the QoS requirements of all the different V2X services. Additionally, it is observed that the proposed G-VSPA algorithm achieves close to optimal performance while having lower complexity.Comment: 13 pages, 16 figures (including 5 bio pictures), accepted and to be published in IEEE Transactions on Mobile Computin
    corecore