122 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Resource allocation for NOMA wireless systems

    Get PDF
    Power-domain non-orthogonal multiple access (NOMA) has been widely recognized as a promising candidate for the next generation of wireless communication systems. By applying superposition coding at the transmitter and successive interference cancellation at the receiver, NOMA allows multiple users to access the same time-frequency resource in power domain. This way, NOMA not only increases the system’s spectral and energy efficiencies, but also supports more users when compared with the conventional orthogonal multiple access (OMA). Meanwhile, improved user fairness can be achieved by NOMA. Nonetheless, the promised advantages of NOMA cannot be realized without proper resource allocation. The main resources in wireless communication systems include time, frequency, space, code and power. In NOMA systems, multiple users are accommodated in each time/frequency/code resource block (RB), forming a NOMA cluster. As a result, how to group the users into NOMA clusters and allocate the power is of significance. A large number of studies have been carried out for developing efficient power allocation (PA) algorithms in single-input single-output (SISO) scenarios with fixed user clustering. To fully reap the gain of NOMA, the design of joint PA and user clustering is required. Moreover, the study of PA under multiple-input multiple-output (MIMO) systems still remains at an incipient stage. In this dissertation, we develop novel algorithms to allocate resource for both SISO-NOMA and MIMO-NOMA systems. More specifically, Chapter 2 compares the system capacity of MIMO-NOMA with MIMO-OMA. It is proved analytically that MIMO-NOMA outperforms MIMO-OMA in terms of both sum channel capacity and ergodic sum capacity when there are multiple users in a cluster. Furthermore, it is demonstrated that the more users are admitted to a cluster, the lower is the achieved sum rate, which illustrates the tradeoff between the sum rate and maximum number of admitted users. Chapter 3 addresses the PA problem for a general multi-cluster multi-user MIMONOMA system to maximize the system energy efficiency (EE). First, a closed-form solution is derived for the corresponding sum rate (SE) maximization problem. Then, the EE maximization problem is solved by applying non-convex fractional programming. Chapter 4 investigates the energy-efficient joint user-RB association and PA problem for an uplink hybrid NOMA-OMA system. The considered problem requires to jointly optimize the user clustering, channel assignment and power allocation. To address this hard problem, a many-to-one bipartite graph is first constructed considering the users and RBs as the two sets of nodes. Based on swap matching, a joint user-RB association and power allocation scheme is proposed, which converges within a limited number of iterations. Moreover, for the power allocation under a given user-RB association, a low complexity optimal PA algorithm is proposed. Furthermore, Chapter 5 focuses on securing the confidential information of massive MIMO-NOMA networks by exploiting artificial noise (AN). An uplink training scheme is first proposed, and on this basis, the base station precodes the confidential information and injects the AN. Following this, the ergodic secrecy rate is derived for downlink transmission. Additionally, PA algorithms are proposed to maximize the SE and EE of the system. Finally, conclusions are drawn and possible extensions to resource allocation in NOMA systems are discussed in Chapter 6

    Physical layer security for NOMA: requirements, merits, challenges, and recommendations

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as one of the most significant enabling technologies for future wireless systems due to its eminent spectral efficiency, its ability to provide an additional degree of freedom for ultra reliable low latency communications (URLLC), and grant free random access. Meanwhile, physical layer security (PLS) has got much attention for future wireless communication systems due to its capability to efficiently complement the cryptography-based algorithms for enhancing overall security of the communication system. In this article, security design requirements for downlink power domain NOMA and solutions provided by PLS to fulfil these requirements are discussed. The merits and challenges which were encountered while employing PLS to NOMA are identified. Finally, future recommendations and prospective so lutions are also presented.No sponso

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field
    corecore