130 research outputs found

    On the secrecy performance of land mobile satellite communication systems

    Get PDF
    In this paper, we investigate the secrecy performance against eavesdropping of a land mobile satellite (LMS) system, where the satellite employs the spot beam technique, and both the terrestrial user and eavesdropper are equipped with multiple antennas and utilize maximal ratio combining (MRC) to receive the confidential message. Specifically, in terms of the availability of the eavesdropper’s CSI at the satellite, we consider both passive (Scenario I) and active (Scenario II) eavesdropping. For Scenario I where the eavesdropper’s channel state information (CSI) is unknown to the satellite, closed-form expressions for the probability of non-zero secrecy capacity and secrecy outage probability are derived. Furthermore, expressions for the asymptotic secrecy outage probability are also presented to reveal the secrecy diversity order and array gain of the considered system. For Scenario II where the eavesdropper’s CSI is available at the satellite, novel expressions for the exact and asymptotic average secrecy capacity are obtained. Based on a simple asymptotic formula, we can characterize the high signalto- noise ratio (SNR) slope and high SNR power offset of the LMS systems. Finally, simulations are provided to validate our theoretical analysis and show the effect of different parameters on the system performance

    Secrecy Analysis on Network Coding in Bidirectional Multibeam Satellite Communications

    Get PDF
    Network coding is an efficient means to improve the spectrum efficiency of satellite communications. However, its resilience to eavesdropping attacks is not well understood. This paper studies the confidentiality issue in a bidirectional satellite network consisting of two mobile users who want to exchange message via a multibeam satellite using the XOR network coding protocol. We aim to maximize the sum secrecy rate by designing the optimal beamforming vector along with optimizing the return and forward link time allocation. The problem is nonconvex, and we find its optimal solution using semidefinite programming together with a 1-D search. For comparison, we also solve the sum secrecy rate maximization problem for a conventional reference scheme without using network coding. Simulation results using realistic system parameters demonstrate that the bidirectional scheme using network coding provides considerably higher secrecy rate compared with that of the conventional schem

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    The Role of Physical Layer Security in Satellite-Based Networks

    Full text link
    In the coming years, 6G will revolutionize the world with a large amount of bandwidth, high data rates, and extensive coverage in remote and rural areas. These goals can only be achieved by integrating terrestrial networks with non-terrestrial networks. On the other hand, these advancements are raising more concerns than other wireless links about malicious attacks on satellite-terrestrial links due to their openness. Over the years, physical layer security (PLS) has emerged as a good candidate to deal with security threats by exploring the randomness of wireless channels. In this direction, this paper reviews how PLS methods are implemented in satellite communications. Firstly, we discuss the ongoing research on satellite-based networks by highlighting the key points in the literature. Then, we revisit the research activities on PLS in satellite-based networks by categorizing the different system architectures. Finally, we highlight research directions and opportunities to leverage the PLS in future satellite-based networks

    Security and Reliability Analysis of Satellite-Terrestrial Multi-Relay Networks with Imperfect CSI

    Get PDF
    This work investigates the security and reliabil- ity analysis for a novel satellite-terrestrial (SatTer) network. Specifically, a satellite attempts to transmit confidential infor- mation to a ground user (GU) via the support of multiple relay nodes in the presence of an eavesdropper that tries to overhear the information. A friendly jammer is deployed to improve the secure transmission between the satellite and the relays. Furthermore, satellite-to-relay generalized Rician fading channels and imperfect channel state information (CSI) are deployed to examine a general system model. In this context, the closed-formed expressions for the outage probability (OP) and intercept probability (IP) are derived corresponding to an amplify-and-forward (AF)-based relaying scheme, which is challenging and has not been studied before. Finally, the exactness of the mathematical analyses is validated through Monte Carlo simulations. Furthermore, the effects of various key parameters (e.g., channel estimation errors, satellite’s transmit power, relay’s transmit power, number of relays, and fading severity parameter) are examine

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    Satellite-based communications security:A survey of threats, solutions, and research challenges

    Get PDF
    Satellite-based Communication (SATCOM) systems are gaining renewed momentum in Industry and Academia, thanks to innovative services introduced by leading tech companies and the promising impact they can deliver towards the global connectivity objective tackled by early 6G initiatives. On the one hand, the emergence of new manufacturing processes and radio technologies promises to reduce service costs while guaranteeing outstanding communication latency, available bandwidth, flexibility, and coverage range. On the other hand, cybersecurity techniques and solutions applied in SATCOM links should be updated to reflect the substantial advancements in attacker capabilities characterizing the last two decades. However, business urgency and opportunities are leading operators towards challenging system trade-offs, resulting in an increased attack surface and a general relaxation of the available security services. In this paper, we tackle the cited problems and present a comprehensive survey on the link-layer security threats, solutions, and challenges faced when deploying and operating SATCOM systems. Specifically, we classify the literature on security for SATCOM systems into two main branches, i.e., physical-layer security and cryptography schemes. Then, we further identify specific research domains for each of the identified branches, focusing on dedicated security issues, including, e.g., physical-layer confidentiality, anti-jamming schemes, anti-spoofing strategies, and quantum-based key distribution schemes. For each of the above domains, we highlight the most essential techniques, peculiarities, advantages, disadvantages, lessons learned, and future directions. Finally, we also identify emerging research topics whose additional investigation by Academia and Industry could further attract researchers and investors, ultimately unleashing the full potential behind ubiquitous satellite communications.</p

    Satellite-Based Communications Security: A Survey of Threats, Solutions, and Research Challenges

    Get PDF
    Satellite-based Communication systems are gaining renewed momentum in Industry and Academia, thanks to innovative services introduced by leading tech companies and the promising impact they can deliver towards the global connectivity objective tackled by early 6G initiatives. On the one hand, the emergence of new manufacturing processes and radio technologies promises to reduce service costs while guaranteeing outstanding communication latency, available bandwidth, flexibility, and coverage range. On the other hand, cybersecurity techniques and solutions applied in SATCOM links should be updated to reflect the substantial advancements in attacker capabilities characterizing the last two decades. However, business urgency and opportunities are leading operators towards challenging system trade-offs, resulting in an increased attack surface and a general relaxation of the available security services. In this paper, we tackle the cited problems and present a comprehensive survey on the link-layer security threats, solutions, and challenges faced when deploying and operating SATCOM systems.Specifically, we classify the literature on security for SATCOM systems into two main branches, i.e., physical-layer security and cryptography schemes.Then, we further identify specific research domains for each of the identified branches, focusing on dedicated security issues, including, e.g., physical-layer confidentiality, anti-jamming schemes, anti-spoofing strategies, and quantum-based key distribution schemes. For each of the above domains, we highlight the most essential techniques, peculiarities, advantages, disadvantages, lessons learned, and future directions.Finally, we also identify emerging research topics whose additional investigation by Academia and Industry could further attract researchers and investors, ultimately unleashing the full potential behind ubiquitous satellite communications.Comment: 72 page

    Security-Reliability Tradeoffs for Satellite-Terrestrial Relay Networks with a Friendly Jammer and Imperfect CSI

    Get PDF
    peer reviewedThis article proposes and analyzes the reliability and security tradeoff for a satellite-terrestrial (SatTer) relay system. Herein, a satellite sends confidential information to multiple ground users with the help of a relay base station (BS) in the presence of multiple eavesdroppers trying to wiretap the information. In particular, a friendly jammer is deployed near the relay BS to improve secure transmissions. Moreover, the nonidentical Rayleigh fading channels and imperfect channel state information are adopted for a general system model. Then, we consider both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies to give a full picture of the benefits of each method. In this context, we derive the closed-form expressions of the outage probability and intercept probability corresponding to AF- and DF-based relaying schemes, which is a high challenge and has not been investigated before. Then, Monte-Carlo simulations are conducted to evaluate the correctness of the mathematical analysis and the effectiveness of the proposed methods. Furthermore, the security and reliability trade-off of the SatTer system and the influences of various system parameters (e.g., satellite's transmit power, channel estimation errors, relay's transmit power, fading severity parameter, the average power of light-of-sight, and satellite's multipath components) on the system performance are shown
    • …
    corecore