18,929 research outputs found

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Biometric Authentication System on Mobile Personal Devices

    Get PDF
    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information fusion. For the complicated face authentication task on the devices with limited resources, the emphasis is largely on the reliability and applicability of the system. Both theoretical and practical considerations are taken. The final system is able to achieve an equal error rate of 2% under challenging testing protocols. The low hardware and software cost makes the system well adaptable to a large range of security applications

    Improved Distributed Estimation Method for Environmental\ud time-variant Physical variables in Static Sensor Networks

    Get PDF
    In this paper, an improved distributed estimation scheme for static sensor networks is developed. The scheme is developed for environmental time-variant physical variables. The main contribution of this work is that the algorithm in [1]-[3] has been extended, and a filter has been designed with weights, such that the variance of the estimation errors is minimized, thereby improving the filter design considerably\ud and characterizing the performance limit of the filter, and thereby tracking a time-varying signal. Moreover, certain parameter optimization is alleviated with the application of a particular finite impulse response (FIR) filter. Simulation results are showing the effectiveness of the developed estimation algorithm

    Finite-Time Resilient Formation Control with Bounded Inputs

    Full text link
    In this paper we consider the problem of a multi-agent system achieving a formation in the presence of misbehaving or adversarial agents. We introduce a novel continuous time resilient controller to guarantee that normally behaving agents can converge to a formation with respect to a set of leaders. The controller employs a norm-based filtering mechanism, and unlike most prior algorithms, also incorporates input bounds. In addition, the controller is shown to guarantee convergence in finite time. A sufficient condition for the controller to guarantee convergence is shown to be a graph theoretical structure which we denote as Resilient Directed Acyclic Graph (RDAG). Further, we employ our filtering mechanism on a discrete time system which is shown to have exponential convergence. Our results are demonstrated through simulations

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
    corecore