6,221 research outputs found

    SIMDAT

    No full text

    Raising the visibility of protected data: A pilot data catalog project

    Get PDF
    Sharing research data that is protected for legal, regulatory, or contractual reasons can be challenging and current mechanisms for doing so may act as barriers to researchers and discourage data sharing. Additionally, the infrastructure commonly used for open data repositories does not easily support responsible sharing of protected data. This chapter presents a case study of an academic university library’s work to configure the existing institutional data repository to function as a data catalog. By engaging in this project, university librarians strive to enhance visibility and access to protected datasets produced at the institution and cultivate a data sharing culture

    Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline.

    Get PDF
    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges--management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu

    Identity in research infrastructure and scientific communication: Report from the 1st IRISC workshop, Helsinki Sep 12-13, 2011

    Get PDF
    Motivation for the IRISC workshop came from the observation that identity and digital identification are increasingly important factors in modern scientific research, especially with the now near-ubiquitous use of the Internet as a global medium for dissemination and debate of scientific knowledge and data, and as a platform for scientific collaborations and large-scale e-science activities.

The 1 1/2 day IRISC2011 workshop sought to explore a series of interrelated topics under two main themes: i) unambiguously identifying authors/creators & attributing their scholarly works, and ii) individual identification and access management in the context of identity federations. Specific aims of the workshop included:

• Raising overall awareness of key technical and non-technical challenges, opportunities and developments.
• Facilitating a dialogue, cross-pollination of ideas, collaboration and coordination between diverse – and largely unconnected – communities.
• Identifying & discussing existing/emerging technologies, best practices and requirements for researcher identification.

This report provides background information on key identification-related concepts & projects, describes workshop proceedings and summarizes key workshop findings

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    The medical science DMZ: a network design pattern for data-intensive medical science

    Get PDF
    Abstract: Objective We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet-filter firewalls, network intrusion-detection systems. Results We describe a “Medical Science DMZ” concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. Discussion The exponentially increasing amounts of “omics” data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research “Big Data.” The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements
    corecore