4,914 research outputs found
Provenance-based trust for grid computing: Position Paper
Current evolutions of Internet technology such as Web Services, ebXML, peer-to-peer and Grid computing all point to the development of large-scale open networks of diverse computing systems interacting with one another to perform tasks. Grid systems (and Web Services) are exemplary in this respect and are perhaps some of the first large-scale open computing systems to see widespread use - making them an important testing ground for problems in trust management which are likely to arise. From this perspective, today's grid architectures suffer from limitations, such as lack of a mechanism to trace results and lack of infrastructure to build up trust networks. These are important concerns in open grids, in which "community resources" are owned and managed by multiple stakeholders, and are dynamically organised in virtual organisations. Provenance enables users to trace how a particular result has been arrived at by identifying the individual services and the aggregation of services that produced such a particular output. Against this background, we present a research agenda to design, conceive and implement an industrial-strength open provenance architecture for grid systems. We motivate its use with three complex grid applications, namely aerospace engineering, organ transplant management and bioinformatics. Industrial-strength provenance support includes a scalable and secure architecture, an open proposal for standardising the protocols and data structures, a set of tools for configuring and using the provenance architecture, an open source reference implementation, and a deployment and validation in industrial context. The provision of such facilities will enrich grid capabilities by including new functionalities required for solving complex problems such as provenance data to provide complete audit trails of process execution and third-party analysis and auditing. As a result, we anticipate that a larger uptake of grid technology is likely to occur, since unprecedented possibilities will be offered to users and will give them a competitive edge
Stakeholder involvement, motivation, responsibility, communication: How to design usable security in e-Science
e-Science projects face a difficult challenge in providing access to valuable computational resources, data and software to large communities of distributed users. Oil the one hand, the raison d'etre of the projects is to encourage members of their research communities to use the resources provided. Oil the other hand, the threats to these resources from online attacks require robust and effective Security to mitigate the risks faced. This raises two issues: ensuring that (I) the security mechanisms put in place are usable by the different users of the system, and (2) the security of the overall system satisfies the security needs of all its different stakeholders. A failure to address either of these issues call seriously jeopardise the success of e-Science projects.The aim of this paper is to firstly provide a detailed understanding of how these challenges call present themselves in practice in the development of e-Science applications. Secondly, this paper examines the steps that projects can undertake to ensure that security requirements are correctly identified, and security measures are usable by the intended research community. The research presented in this paper is based Oil four case studies of c-Science projects. Security design traditionally uses expert analysis of risks to the technology and deploys appropriate countermeasures to deal with them. However, these case studies highlight the importance of involving all stakeholders in the process of identifying security needs and designing secure and usable systems.For each case study, transcripts of the security analysis and design sessions were analysed to gain insight into the issues and factors that surround the design of usable security. The analysis concludes with a model explaining the relationships between the most important factors identified. This includes a detailed examination of the roles of responsibility, motivation and communication of stakeholders in the ongoing process of designing usable secure socio-technical systems such as e-Science. (C) 2007 Elsevier Ltd. All rights reserved
3rd EGEE User Forum
We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum
Innovative in silico approaches to address avian flu using grid technology
The recent years have seen the emergence of diseases which have spread very
quickly all around the world either through human travels like SARS or animal
migration like avian flu. Among the biggest challenges raised by infectious
emerging diseases, one is related to the constant mutation of the viruses which
turns them into continuously moving targets for drug and vaccine discovery.
Another challenge is related to the early detection and surveillance of the
diseases as new cases can appear just anywhere due to the globalization of
exchanges and the circulation of people and animals around the earth, as
recently demonstrated by the avian flu epidemics. For 3 years now, a
collaboration of teams in Europe and Asia has been exploring some innovative in
silico approaches to better tackle avian flu taking advantage of the very large
computing resources available on international grid infrastructures. Grids were
used to study the impact of mutations on the effectiveness of existing drugs
against H5N1 and to find potentially new leads active on mutated strains. Grids
allow also the integration of distributed data in a completely secured way. The
paper presents how we are currently exploring how to integrate the existing
data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target
- …
