2 research outputs found

    Secure and Reliable IPTV Multimedia Transmission Using Forward Error Correction

    Get PDF
    With the wide deployment of Internet Protocol (IP) infrastructure and rapid development of digital technologies, Internet Protocol Television (IPTV) has emerged as one of the major multimedia access techniques. A general IPTV transmission system employs both encryption and forward error correction (FEC) to provide the authorized subscriber with a high-quality perceptual experience. This two-layer processing, however, complicates the system design in terms of computational cost and management cost. In this paper, we propose a novel FEC scheme to ensure the secure and reliable transmission for IPTV multimedia content and services. The proposed secure FEC utilizes the characteristics of FEC including the FEC-encoded redundancies and the limitation of error correction capacity to protect the multimedia packets against the malicious attacks and data transmission errors/losses. Experimental results demonstrate that the proposed scheme obtains similar performance compared with the joint encryption and FEC scheme

    QoS-Based and Secure Multipath Routing in Wireless Sensor Networks

    Get PDF
    With the growing demand for quality of service (QoS) aware routing protocols in wireless networks, QoS-based routing has emerged as an interesting research topic. A QoS guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. Furthermore, due to the increased use of sensor nodes in a variety of application fields, WSNs need to handle heterogeneous traffic with diverse priorities to achieve the required QoS. In this thesis, we investigate the problem of providing multi-QoS in routing protocols for WSNs. In particular, we investigate several aspects related to the application requirements and the network states and resources. We present multi-objective QoS aware routing protocol for WSNs that uses the geographic routing mechanism combined with the QoS requirements to meet diverse application requirements by considering the changing conditions of the network. The protocol formulates the application requirements with the links available resources and conditions to design heuristic neighbor discovery algorithms. Also, with the unlimited resource at the sink node, the process of selecting the routing path/paths is assigned to the sink. Paths selection algorithms are designed with various goals in order to extend network lifetime, enhance the reliability of data transmission, decrease end-to-end delay, achieve load balancing and provide fault tolerance. We also develop a cross-layer routing protocol that combines routing at network layer and the time scheduling at the MAC layer with respect to delay and reliability in an energy efficient way. A node-disjoint multipath routing is used and a QoS-aware priority scheduling considering MAC layer is proposed to ensure that real time and non-real time traffic achieve their desired QoS while alleviating congestion in the network. Additionally, we propose new mechanism for secure and reliable data transmission in multipath routing for WSNs. Different levels of security requirements are defined and depending on these requirements, a selective encryption scheme is introduced to encrypt selected number of coded fragments in order to enhance security and thereby reduce the time required for encryption. Node-disjoint multipath routing combined with source coding is used in order to enhance both security and reliability of data transmission. Also, we develop an allocation strategy that allocates fragments on paths to enhance both the security and probability of successful data delivery. Analysis and extensive simulation are conducted to study the performance of all the above proposed protocols
    corecore