2,922 research outputs found

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Business Models for e-Health: Evidence from Ten Case Studies

    Full text link
    An increasingly aging population and spiraling healthcare costs have made the search for financially viable healthcare models an imperative of this century. The careful and creative application of information technology can play a significant role in meeting that challenge. Valuable lessons can be learned from an analysis of ten innovative telemedicine and e-health initiatives. Having proven their effectiveness in addressing a variety of medical needs, they have progressed beyond small-scale implementations to become an established part of healthcare delivery systems around the world

    Casualty evacuation in Korea, 1950-53: the British experience

    Get PDF
    The Korean War was the first conflict in which helicopters were used extensively for casualty evacuation but their contribution to medical evacuation at that time is disputed. On the one hand, many cases undoubtedly survived because of helicopter transportation; on the other, the proportion of casualties evacuated appears to have been small and difficult to determine precisely. Taking the British army as a case study, this article looks more closely at arrangements for casualty evacuation in Korea, assessing the role of helicopters in relation to other elements of the evacuation system and its operation as a whole. The article is divided into several sections. The first examines the command structure of the medical system in Korea, which extended as far back as hospitals in Japan. It shows how medical support for British forces was closely integrated with that of other Commonwealth forces. It notes that rapid and effective integration was a major factor in the success of medical evacuation because it allowed ideas and equipment to be shared easily and because it fostered a spirit of cooperation. This section also highlights the Second World service of all senior Commonwealth medical officers as a factor conducive to integration. The second section provides an overview of the chain of evacuation from the frontline to hospitals in Japan. It describes the functions of the different medical institutions along the chain and how they were connected. Among other things, it shows how the chain for British and Commonwealth troops intersected with medical units of the United States such as Mobile Army Surgical Hospitals and hospital trains. In the third section of the article, there is a detail examination of evacuation by helicopter, describing how it was arranged, what its limitations were, and what types of casualty were evacuated. It estimates the proportion of casualties that were evacuated by this means. The fourth and fifth sections highlight the importance of command decisions in the effective working of the evacuation system. The fourth concentrates on the evolution of a system of forward treatment of minor cases, looking at the challenge posed by disease and other non-battle casualties. The fifth and final section of the article describes how the system of evacuation functioned as a whole, including the different means used to carry the sick and wounded in addition to helicopters. It stresses the importance of coordination between these different elements and places particular emphasis on the value of wireless communications. The article concludes that the success of casualty evacuation in Korea depended less on any single method of transportation than on effective command and control. In this respect, communication between constituent units of the evacuation chain and cooperation between British and other UN forces was crucial. Of equal and perhaps even greater importance was the decision to implement a policy of forward treatment of sickness and minor injuries. Without such a policy, the lines of evacuation would inevitably have become congested, having a detrimental effect on casualty survival rates. This policy drew on the lessons of the two world wars which were still relatively fresh in the minds of medical commanders. Although far less striking than the advent of the helicopter, prior knowledge of coalition warfare and the handling of mass casualties was crucial to medical success. If there is a lesson to be learned from the Korean War for own times, it is probably this

    Video Communication in Telemedicine

    Get PDF

    Wearable feedback systems for rehabilitation

    Get PDF
    In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    Med-e-Tel 2014

    Get PDF

    Considerations of Telemedicine in the Delivery of Modern Healthcare

    Get PDF
    Telecommunication technologies have made telemedicine a modern health delivery system. Telemedicine enhances home telehealth services as specialty care, patient consultations, remote patient monitoring, and medical education without the patients having to leave their homes. Urban medical centers have used telemedicine to expand access to specialist services by centralizing health care providers to assist patients seen by their primary care providers. This paper provides a brief history of telemedicine; explains how telemedicine works; covers a few cases of telemedicine implementation, identifies lessons learned, discusses some current issues of telemedicine, and concludes with some limitations of telemedicine
    corecore