1,675 research outputs found

    No Need to Know Physics: Resilience of Process-based Model-free Anomaly Detection for Industrial Control Systems

    Full text link
    In recent years, a number of process-based anomaly detection schemes for Industrial Control Systems were proposed. In this work, we provide the first systematic analysis of such schemes, and introduce a taxonomy of properties that are verified by those detection systems. We then present a novel general framework to generate adversarial spoofing signals that violate physical properties of the system, and use the framework to analyze four anomaly detectors published at top security conferences. We find that three of those detectors are susceptible to a number of adversarial manipulations (e.g., spoofing with precomputed patterns), which we call Synthetic Sensor Spoofing and one is resilient against our attacks. We investigate the root of its resilience and demonstrate that it comes from the properties that we introduced. Our attacks reduce the Recall (True Positive Rate) of the attacked schemes making them not able to correctly detect anomalies. Thus, the vulnerabilities we discovered in the anomaly detectors show that (despite an original good detection performance), those detectors are not able to reliably learn physical properties of the system. Even attacks that prior work was expected to be resilient against (based on verified properties) were found to be successful. We argue that our findings demonstrate the need for both more complete attacks in datasets, and more critical analysis of process-based anomaly detectors. We plan to release our implementation as open-source, together with an extension of two public datasets with a set of Synthetic Sensor Spoofing attacks as generated by our framework

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure
    corecore