8,091 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Policy-based Danger Management in Artificial Immune System Inspired Secure Routing in Wireless Mesh Networks

    Full text link
    This paper introduces Policy based Management Information Base to manage danger in Artificial Immune System inspired secure routing in Wireless Mesh Networks. WMN management functions are defined and the paper focuses only on the security function. Proposed policy based management and typical operation of the architecture are also reported

    Study of Performance of Security Protocols in Wireless Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) represent a good solution to providing wireless Internet connectivity in a sizable geographic area; this new and promising paradigm allows for network deployment at a much lower cost than with classic WiFi networks. Standards-based wireless access takes advantage of the growing popularity of inexpensive Wi-Fi clients,enabling new service opportunities and applications that improve user productivity and responsiveness. The deployment of WMNs, are suffered by : (i) All, the communications being wireless and therefore prone to interference, present severe capacity and delay constraints, (ii) The second reason that slows down the deployment of WMNs is the lack of security guarantees. Wireless mesh networks mostly susceptible to routing protocol threats and route disruption attacks. Most of these threats require packet injection with a specialized knowledge of the routing protocol; the threats to wireless mesh networks and are summarized as (i) External attacks: in which attackers not belonging to the network jam the communication or inject erroneous information, and (ii) Internal attacks: in which attackers are internal, compromised nodes that are difficult to be detected. The MAC layers of WMN are subjected to the attacks like Eavesdropping, Link Layer Jamming Attack, MAC Spoofing Attack, and Replay Attack. The attacks in Network Layer are: Control Plane Attacks, Data Plane Attacks, Rushing attack, Wormhole attack, and Black Hole Attack. In this project work we are concern with the threats related to Network layer of WMN based upon 802.11i and analysis the performance of secure routing protocols and their performance against the intrusion detection

    Attacks and countermeasures on routing protocols in wireless networks

    Get PDF
    Routing in wireless networks is not an easy task as they are highly vulnerable to attacks. The main goal of this work is to study the routing performance and security aspects of wireless ad hoc and mesh networks. Most of the routing protocols use hop-count as the routing metric. Hop count metric may not be appropriate for routing in wireless networks as this does not account for the link qualities, advantages of multi-radio paradigm etc. There are several metrics designed for link quality based source routing protocols for multi-radio wireless ad hoc and mesh networks. For example Weighted Cumulative Expected Transmission Time (WCETT), Adjusted Expected Transfer Delay(AETD) etc. But these metrics do not consider the effect of individual link qualities on the total route quality and route selection. This lack of ability from WCETT or AETD would allow them to select suboptimal paths when actually an optimal path is available. In another point of view, this inability can create a routing disruption attack named as delay-variation attack (a variant of black hole attack). It can be launched by a couple of colluding attackers attracting packets at one point by showing very good link qualities and dropping packets at another point by decreasing the link quality. To select an optimal route and prevent the above mentioned attack, a new routing metric known as Variance Based Path Quality metric (VBPQ) is proposed. VBPQ metric provides a robust, reliable and secure edge to the routing mechanism. Another major contribution of this study is to provide a detection mechanism for wormhole attacks in wireless ad hoc networks operating on link quality based source routing protocols. There have been several detection techniques designed for hop count based routing protocols but not for link quality based source routing protocols. In this work, a data mining approach called Cross feature analysis is used in an algorithm to detect wormhole attacks

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Securing Remote Access Inside Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) that are being increasingly deployed in communities and public places provide a relatively stable routing infrastructure and can be used for diverse carrier-managed services. As a particular example we consider the scenario where a mobile device initially registered for the use with one wireless network (its home network) moves to the area covered by another network inside the same mesh. The goal is to establish a secure access to the home network using the infrastructure of the mesh. Classical mechanisms such as VPNs can protect end-to-end communication between the mobile device and its home network while remaining transparent to the routing infrastructure. In WMNs this transparency can be misused for packet injection leading to the unnecessary consumption of the communication bandwidth. This may have negative impact on the cooperation of mesh routers which is essential for the connection establishment. In this paper we describe how to establish remote connections inside WMNs while guaranteeing secure end-to-end communication between the mobile device and its home network and secure transmission of the corresponding packets along the underlying multi-hop path. Our solution is a provably secure, yet lightweight and round-optimal remote network access protocol in which intermediate mesh routers are considered to be part of the security architecture. We also sketch some ideas on the practical realization of the protocol using known standards and mention extensions with regard to forward secrecy, anonymity and accounting
    corecore