49 research outputs found

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Security and accuracy of fingerprint-based biometrics: A review

    Get PDF
    Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper

    Privacy Protection in Distributed Fingerprint-based Authentication

    Full text link
    Biometric authentication is getting increasingly popular due to the convenience of using unique individual traits, such as fingerprints, palm veins, irises. Especially fingerprints are widely used nowadays due to the availability and low cost of fingerprint scanners. To avoid identity theft or impersonation, fingerprint data is typically stored locally, e.g., in a trusted hardware module, in a single device that is used for user enrollment and authentication. Local storage, however, limits the ability to implement distributed applications, in which users can enroll their fingerprint once and use it to access multiple physical locations and mobile applications afterwards. In this paper, we present a distributed authentication system that stores fingerprint data in a server or cloud infrastructure in a privacy-preserving way. Multiple devices can be connected and perform user enrollment or verification. To secure the privacy and integrity of sensitive data, we employ a cryptographic construct called fuzzy vault. We highlight challenges in implementing fuzzy vault-based authentication, for which we propose and compare alternative solutions. We conduct a security analysis of our biometric cryptosystem, and as a proof of concept, we build an authentication system for access control using resource-constrained devices (Raspberry Pis) connected to fingerprint scanners and the Microsoft Azure cloud environment. Furthermore, we evaluate the fingerprint matching algorithm against the well-known FVC2006 database and show that it can achieve comparable accuracy to widely-used matching techniques that are not designed for privacy, while remaining efficient with an authentication time of few seconds.Comment: This is an extended version of the paper with the same title which has been accepted for publication at the Workshop on Privacy in the Electronic Society (WPES 2019

    Biometrics based privacy-preserving authentication and mobile template protection

    Get PDF
    Smart mobile devices are playing a more and more important role in our daily life. Cancelable biometrics is a promising mechanism to provide authentication to mobile devices and protect biometric templates by applying a noninvertible transformation to raw biometric data. However, the negative effect of nonlinear distortion will usually degrade the matching performance significantly, which is a nontrivial factor when designing a cancelable template. Moreover, the attacks via record multiplicity (ARM) present a threat to the existing cancelable biometrics, which is still a challenging open issue. To address these problems, in this paper, we propose a new cancelable fingerprint template which can not only mitigate the negative effect of nonlinear distortion by combining multiple feature sets, but also defeat the ARM attack through a proposed feature decorrelation algorithm. Our work is a new contribution to the design of cancelable biometrics with a concrete method against the ARM attack. Experimental results on public databases and security analysis show the validity of the proposed cancelable template

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    Certificateless Digital Signature Technology for e-Governance Solutions

    Get PDF
    . In spite of the fact that digital signing is an essential requirement for implementation of e-governance solutions in any organization, its use in large scale Government ICT implementation is negligible in India. In order to understand the reasons for low-level acceptance of the technology, authors performed a detailed study of a famous e-governance initiative of India. The outcome of the study revealed that the reasons are related to the challenges concerning the use of cryptographic devices carrying private key and the complicated process of generation, maintenance and disposal of Digital Signature Certificates (DSC).The solution, for the challenges understood from the case study, required implementation of a certificateless technology where private keys should be generated as and when required rather than storing them on cryptographic devices. Although many solutions which provide certificateless technology exist, to date there have been no practical implementation for using biometrics for implementing the solution. This paper presents the first realistic architecture to implement Identity Based Cryptography with biometrics using RSA algorithm. The solution presented in the paper is capable of providing a certificateless digital signature technology to the users, where public and private keys are generated on-the-fly
    corecore