419 research outputs found

    Secure Data Sharing in Cloud Computing using Revocable Storage Identity- Based Encryption

    Get PDF
    Nowadays regularly use cloud services in our daily life.There are various services provided by cloud such as a service, Platform as a service, and Infrastructure asa service. The used to keep our data,documents, and files on cloud. The data that store may be Personal, Private, secret data. So must be very sure that whatever the cloud service we use that must be secure. Cloud computing Provides number of services to client over internet. Storage service isone ofthe important services that people used now days for storing data on network so that they can access their data from anywhere and anytime. With the benefit of storage service there is an issue of security. To overcome security problem the proposed system contain two levels of security and to reduce the unwanted storage space de-duplication[1,2] technique is involved. To increase the level of security one technique is a session password.Session passwords can be used only once and every time a new password is generated.To protect the confidentiality of sensitive data while supporting de-duplication[1,2]the convergent encryption technique has been proposed to encrypt the data before outsourcing,Symmetrickey algorithm uses same key for both encryption and decryption.In this paper,I will focus on session based authentication for both encryptions for files and duplication check for reduce space of storage on cloud

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv

    Identity based proxy re-encryption scheme (IBPRE+) for secure cloud data sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In proxy re-encryption (PRE), a proxy with re-encryption keys can transfer aciphertext computed under Alice's public key into a new one, which can be decrypted by Bob only with his secret key. Recently, Wang et al. introduced the concept of PRE plus (PRE+) scheme, which can be seen as the dual of PRE, and is almost the same as PRE scheme except that the re-encryption keys are generated by the encrypter. Compared to PRE, PRE+ scheme can easily achieve two important properties: first, the message-level based fine-grained delegation and, second, the non-transferable property. In this paper, we extend the concept of PRE+ to the identity based setting. We propose a concrete IBPRE+ scheme based on 3-linear map and roughly discuss its properties. We also demonstrate potential application of this new primitive to secure cloud data sharing.Peer ReviewedPostprint (author's final draft

    Enhance Data Security Protection for Data Sharing in Cloud Storage System

    Get PDF
    Cloud computing technology can be used in all types of organizations. There are many benefits to use cloud storage. The most notable is data accessibility. Data stored in the cloud can be accessed at any time any place. Another advantage of cloud storage is data sharing between users. By sharing storage and networks with many users it is also possible for unauthorized users to access our data. To provide confidentiality of shared sensitive data, the cryptographic techniques are applied. So protect the data from unauthorized users, the cryptographic key is main challenge. In this method a data protection for cloud storage 1) The key is protected by two factors: Secret key is stored in the computer and personal security device 2) The key can be revoked efficiently by implementing proxy re-encryption and key separation techniques. 3) The data is protected in a fine grained way by adopting the attribute based encryption technique. So our proposed method provides confidentiality on data

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Data Access in Multiauthority Cloud Storage: Expressive and Revocable Data Control System

    Get PDF
    ABSTRACT Cloud computing is rising enormously due to its advantages and the adaptable storage services being provided by it. Because of this, the number of users has reached the top level. The users will share the sensitive data through the cloud. Furthermore, the user can\u27t trust the untrusted cloud server. Subsequently, the data access control has turned out to be extremely challenging in cloud storage framework. In existing work, revocable data access control scheme proposed for multi-authority cloud storage frameworks which supports the access control in light of the authority control. The authorized users who have desirable attributes given by various authorities can access the data. However, it couldn\u27t control the attacks which can happen to the authorized user who is not having desirable attributes. In this work, they propose a new algorithm named Improved Security Data Access Control which beats the issue exists in the existing work. And furthermore, incorporates the efficient attribute revocation strategy for multi-authority cloud storage. Keywords: Access control, multi-authority, attribute revocation, cloud storage

    Non-transferable unidirectional proxy re-encryption scheme for secure social cloud storage sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Proxy re-encryption (PRE), introduced by Blaze et al. in 1998, allows a semi-trusted proxy with the re-encryption key to translatea ciphertext under the delegator into another ciphertext, which can be decrypted by the delegatee. In this process, the proxy is required to know nothing about the plaintext. Many PRE schemes have been proposed so far, however until now almost all the unidirectional PRE schemes suffer from the transferable property. That is, if the proxy and a set of delegatees collude, they can re-delegate the delegator's decryption rights to the other ones, while the delegator has no agreement on this. Thus designing non-transferable unidirectional PRE scheme is an important open research problem in the field. In this paper, we tackle this open problem by using the composite order bilinear pairing. Concretely, we design a non-transferable unidirectional PRE scheme based on Hohenberger et al.'s unidirectional PRE scheme. Furthermore, we discuss our scheme's application to secure cloud storage, especially for sharing private multimedia content for social cloud storage users.Peer ReviewedPostprint (author's final draft

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments
    • …
    corecore