67,139 research outputs found

    Grid-enabled Workflows for Industrial Product Design

    No full text
    This paper presents a generic approach for developing and using Grid-based workflow technology for enabling cross-organizational engineering applications. Using industrial product design examples from the automotive and aerospace industries we highlight the main requirements and challenges addressed by our approach and describe how it can be used for enabling interoperability between heterogeneous workflow engines

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Pervasive computing at tableside : a wireless web-based ordering system

    Full text link
    Purpose &ndash; The purpose of this paper is to introduce a wireless web-based ordering system called iMenu in the restaurant industry. Design/methodology/approach &ndash; By using wireless devices such as personal digital assistants and WebPads, this system realizes the paradigm of pervasive computing at tableside. Detailed system requirements, design, implementation and evaluation of iMenu are presented.Findings &ndash; The evaluation of iMenu shows it explicitly increases productivity of restaurant staff. It also has other desirable features such as integration, interoperation and scalability. Compared to traditional restaurant ordering process, by using this system customers get faster and better services, restaurant staff cooperate more efficiently with less working mistakes, and enterprise owners thus receive more business profits. Originality/value &ndash; While many researchers have explored using wireless web-based information systems in different industries, this paper presents a system that employs wireless multi-tiered web-based architecture to build pervasive computing systems. Instead of discussing theoretical issues on pervasive computing, we focus on practical issues of developing a real system, such as choosing of web-based architecture, design of input methods in small screens, and response time in wireless web-based systems.<br /

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented
    • …
    corecore