4,326 research outputs found

    Secure Cascade Channel Synthesis

    Full text link
    We consider the problem of generating correlated random variables in a distributed fashion, where communication is constrained to a cascade network. The first node in the cascade observes an i.i.d. sequence XnX^n locally before initiating communication along the cascade. All nodes share bits of common randomness that are independent of XnX^n. We consider secure synthesis - random variables produced by the system appear to be appropriately correlated and i.i.d. even to an eavesdropper who is cognizant of the communication transmissions. We characterize the optimal tradeoff between the amount of common randomness used and the required rates of communication. We find that not only does common randomness help, its usage exceeds the communication rate requirements. The most efficient scheme is based on a superposition codebook, with the first node selecting messages for all downstream nodes. We also provide a fleeting view of related problems, demonstrating how the optimal rate region may shrink or expand.Comment: Submitted to IEEE Transactions on Information Theor

    Power Allocation in Multiuser Parallel Gaussian Broadcast Channels With Common and Confidential Messages

    Get PDF
    We consider a broadcast communication over parallel channels, where the transmitter sends K+1 messages: one common message to all users, and K confidential messages to each user, which need to be kept secret from all unintended users. We assume partial channel state information at the transmitter, stemming from noisy channel estimation. Our main goal is to design a power allocation algorithm in order to maximize the weighted sum rate of common and confidential messages under a total power constraint. The resulting problem for joint encoding across channels is formulated as the cascade of two problems, the inner min problem being discrete, and the outer max problem being convex. Thereby, efficient algorithms for this kind of optimization program can be used as solutions to our power allocation problem. For the special case K=2 , we provide an almost closed-form solution, where only two single variables must be optimized, e.g., through dichotomic searches. To reduce computational complexity, we propose three new algorithms, maximizing the weighted sum rate achievable by two suboptimal schemes that perform per-user and per-channel encoding. By numerical results, we assess the performance of all proposed algorithms as a function of different system parameters

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Generalized Interference Alignment --- Part I: Theoretical Framework

    Get PDF
    Interference alignment (IA) has attracted enormous research interest as it achieves optimal capacity scaling with respect to signal to noise ratio on interference networks. IA has also recently emerged as an effective tool in engineering interference for secrecy protection on wireless wiretap networks. However, despite the numerous works dedicated to IA, two of its fundamental issues, i.e., feasibility conditions and transceiver design, are not completely addressed in the literature. In this two part paper, a generalised interference alignment (GIA) technique is proposed to enhance the IA's capability in secrecy protection. A theoretical framework is established to analyze the two fundamental issues of GIA in Part I and then the performance of GIA in large-scale stochastic networks is characterized to illustrate how GIA benefits secrecy protection in Part II. The theoretical framework for GIA adopts methodologies from algebraic geometry, determines the necessary and sufficient feasibility conditions of GIA, and generates a set of algorithms that can solve the GIA problem. This framework sets up a foundation for the development and implementation of GIA.Comment: Minor Revision at IEEE Transactions on Signal Processin

    On the Interference Alignment Designs for Secure Multiuser MIMO Systems

    Full text link
    In this paper, we propose two secure multiuser multiple-input multiple-output transmission approaches based on interference alignment (IA) in the presence of an eavesdropper. To deal with the information leakage to the eavesdropper as well as the interference signals from undesired transmitters (Txs) at desired receivers (Rxs), our approaches aim to design the transmit precoding and receive subspace matrices to minimize both the total inter-main-link interference and the wiretapped signals (WSs). The first proposed IA scheme focuses on aligning the WSs into proper subspaces while the second one imposes a new structure on the precoding matrices to force the WSs to zero. When the channel state information is perfectly known at all Txs, in each proposed IA scheme, the precoding matrices at Txs and the receive subspaces at Rxs or the eavesdropper are alternatively selected to minimize the cost function of an convex optimization problem for every iteration. We provide the feasible conditions and the proofs of convergence for both IA approaches. The simulation results indicate that our two IA approaches outperform the conventional IA algorithm in terms of average secrecy sum rate.Comment: Updated version, updated author list, accepted to be appear in IEICE Transaction
    • …
    corecore