63 research outputs found

    Secrecy Dimming Capacity in Multi-LED PAM-Based Visible Light Communications

    Get PDF

    Physical Layer Security for Visible Light Communication Systems:A Survey

    Get PDF
    Due to the dramatic increase in high data rate services and in order to meet the demands of the fifth-generation (5G) networks, researchers from both academia and industry are exploring advanced transmission techniques, new network architectures and new frequency spectrum such as the visible light spectra. Visible light communication (VLC) particularly is an emerging technology that has been introduced as a promising solution for 5G and beyond. Although VLC systems are more immune against interference and less susceptible to security vulnerabilities since light does not penetrate through walls, security issues arise naturally in VLC channels due to their open and broadcasting nature, compared to fiber-optic systems. In addition, since VLC is considered to be an enabling technology for 5G, and security is one of the 5G fundamental requirements, security issues should be carefully addressed and resolved in the VLC context. On the other hand, due to the success of physical layer security (PLS) in improving the security of radio-frequency (RF) wireless networks, extending such PLS techniques to VLC systems has been of great interest. Only two survey papers on security in VLC have been published in the literature. However, a comparative and unified survey on PLS for VLC from information theoretic and signal processing point of views is still missing. This paper covers almost all aspects of PLS for VLC, including different channel models, input distributions, network configurations, precoding/signaling strategies, and secrecy capacity and information rates. Furthermore, we propose a number of timely and open research directions for PLS-VLC systems, including the application of measurement-based indoor and outdoor channel models, incorporating user mobility and device orientation into the channel model, and combining VLC and RF systems to realize the potential of such technologies

    Design of Energy-Efficient Artificial Noise for Physical Layer Security in Visible Light Communications

    Full text link
    This paper studies the design of energy-efficient artificial noise (AN) schemes in the context of physical layer security in visible light communications (VLC). Two different transmission schemes termed selective AN-aided single-input single-output (SISO)\textit{selective AN-aided single-input single-output (SISO)} and AN-aided multiple-input single-output (MISO)\textit{AN-aided multiple-input single-output (MISO)} are examined and compared in terms of secrecy energy efficiency (SEE). In the former, the closest LED luminaire to the legitimate user (Bob) is the information-bearing signal's transmitter. At the same time, the rest of the luminaries act as jammers transmitting AN to degrade the channels of eavesdroppers (Eves). In the latter, the information-bearing signal and AN are combined and transmitted by all luminaries. When Eves' CSI is unknown, an indirect design to improve the SEE is formulated by maximizing Bob's channel's energy efficiency. A low-complexity design based on the zero-forcing criterion is also proposed. In the case of known Eves' CSI, we study the design that maximizes the minimum SEE among those corresponding to all eavesdroppers. At their respective optimal SEEs, simulation results reveal that when Eves' CSI is unknown, the selective AN-aided SISO transmission can archive twice better SEE as the AN-aided MISO does. In contrast, when Eves' CSI is known, the AN-aided MISO outperforms by 30%

    Multi-user visible light communications: State-of-the-art and future directions

    Get PDF
    Visible light communications (VLC) builds upon the dual use of existing lighting infrastructure for wireless data transmission. VLC has recently gained interest as cost-effective, secure, and energy-efficient wireless access technology particularly for indoor user-dense environments. While initial studies in this area are mainly limited to single-user point-to-point links, more recent efforts have focused on multi-user VLC systems in an effort to transform VLC into a scalable and fully networked wireless technology. In this paper, we provide a comprehensive overview of multi-user VLC systems discussing the recent advances on multi-user precoding, multiple access, resource allocation, and mobility management. We further provide possible directions for future research in this emerging topic.King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia ; TÜBİTAKPublisher versio

    Measurements-Based Channel Models for Indoor LiFi Systems

    Get PDF
    Light-fidelity (LiFi) is a fully-networked bidirectional optical wireless communication (OWC) that is considered a promising solution for high-speed indoor connectivity. Unlike in conventional radio frequency wireless systems, the OWC channel is not isotropic, meaning that the device orientation affects the channel gain significantly. However, due to the lack of proper channel models for LiFi systems, many studies have assumed that the receiver is vertically upward and randomly located within the coverage area, which is not a realistic assumption from a practical point of view. In this paper, novel realistic and measurement-based channel models for indoor LiFi systems are proposed. Precisely, the statistics of the channel gain are derived for the case of randomly oriented stationary and mobile LiFi receivers. For stationary users, two channel models are proposed, namely, the modified truncated Laplace (MTL) model and the modified Beta (MB) model. For LiFi users, two channel models are proposed, namely, the sum of modified truncated Gaussian (SMTG) model and the sum of modified Beta (SMB) model. Based on the derived models, the impact of random orientation and spatial distribution of LiFi users is investigated, where we show that the aforementioned factors can strongly affect the channel gain and system performance
    corecore