565 research outputs found

    Securing Downlink Non-Orthogonal Multiple Access Systems by Trusted Relays

    Full text link
    A downlink single-input single-output non-orthogonal multiple access system is considered in which a base station (BS) is communicating with two legitimate users in the presence of an external eavesdropper. A group of trusted cooperative half-duplex relay nodes, powered by the BS, is employed to assist the BS's transmission. The goal is to design relaying schemes such that the legitimate users' secrecy rate region is maximized subject to a total power constraint on the BS and the relays' transmissions. Three relaying schemes are investigated: cooperative jamming, decode-and-forward, and amplify-and-forward. Depending on the scheme, secure beamforming signals are carefully designed for the relay nodes that either diminish the eavesdropper's rate without affecting that of the legitimate users, or increase the legitimate users' rates without increasing that of the eavesdropper. The results show that there is no relaying scheme that fits all conditions; the best relaying scheme depends on the system parameters, namely, the relays' and eavesdropper's distances from the BS, and the number of relays. They also show that the relatively simple cooperative jamming scheme outperforms other schemes when the relays are far from the BS and/or close to the eavesdropper.Comment: To appear in IEEE Globecom 201

    Secure Transmission in Amplify-and-Forward Diamond Networks with a Single Eavesdropper

    Full text link
    Unicast communication over a network of MM-parallel relays in the presence of an eavesdropper is considered. The relay nodes, operating under individual power constraints, amplify and forward the signals received at their inputs. The problem of the maximum secrecy rate achievable with AF relaying is addressed. Previous work on this problem provides iterative algorithms based on semidefinite relaxation. However, those algorithms result in suboptimal performance without any performance and convergence guarantees. We address this problem for three specific network models, with real-valued channel gains. We propose a novel transformation that leads to convex optimization problems. Our analysis leads to (i)a polynomial-time algorithm to compute the optimal secure AF rate for two of the models and (ii) a closed-form expression for the optimal secure rate for the other.Comment: 12pt font, 18 pages, 1 figure, conferenc

    Secure Beamforming for MIMO Two-Way Communications with an Untrusted Relay

    Full text link
    This paper studies the secure beamforming design in a multiple-antenna three-node system where two source nodes exchange messages with the help of an untrusted relay node. The relay acts as both an essential signal forwarder and a potential eavesdropper. Both two-phase and three-phase two-way relay strategies are considered. Our goal is to jointly optimize the source and relay beamformers for maximizing the secrecy sum rate of the two-way communications. We first derive the optimal relay beamformer structures. Then, iterative algorithms are proposed to find source and relay beamformers jointly based on alternating optimization. Furthermore, we conduct asymptotic analysis on the maximum secrecy sum-rate. Our analysis shows that when all transmit powers approach infinity, the two-phase two-way relay scheme achieves the maximum secrecy sum rate if the source beamformers are designed such that the received signals at the relay align in the same direction. This reveals an important advantage of signal alignment technique in against eavesdropping. It is also shown that if the source powers approach zero the three-phase scheme performs the best while the two-phase scheme is even worse than direct transmission. Simulation results have verified the efficiency of the secure beamforming algorithms as well as the analytical findings.Comment: 10 figures, Submitted to IEEE Transactions on Signal Processin
    • …
    corecore